期刊文献+

一种求解混合约束问题的快速完备算法 被引量:2

An Efficient and Complete Method for Solving Mixed Constraints
下载PDF
导出
摘要 布尔与数值变量相混合的约束问题有着广泛的应用,但是当约束中的数值变量间存在非线性关系时该问题求解起来十分困难.目前的许多求解方法都是不完备的,即这些方法不能完全肯定某些包含非线性数值表达式的约束是否能够成立.针对这种问题,提出了数值与区间分析相结合进行数值约束求解的方法.已经实现了一个基于此方法的原型工具.实验结果表明,该方法能够有效、快速、完备地求解非线性混合约束问题. Constraints involving Boolean and numerical variables are used widely, but are difficult to solve especially when they contain nonlinear numerical expressions. Many existing methods for solving such constraints are incomplete. A new method is presented in this paper to solve Boolean combinations of the nonlinear numerical constraints completely. This method combines the numerical methods and interval analysis together. It has been implemented in a prototype tool, and some experiments are made. The experimental results show that this method is effective, efficient, and complete.
作者 季晓慧 张健
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第3期551-556,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60125207 60421001)~~
关键词 约束求解 非线性数值约束 数值法 区间分析 constraint solving nonlinear numerical constraint numerical method interval analysis
  • 相关文献

参考文献14

  • 1J. Zhang. Specification analysis and test data generation by solving Boolean combination of numeric constraints, The 1st Asia-Pacific Conf. Quality Software, Hong Kong, 2000. 被引量:1
  • 2张健著..逻辑公式的可满足性判定 方法、工具及应用[M].北京:科学出版社,2000:172.
  • 3R. E. Moore. Methods and Applications of Interval Analysis,Philadelphia: SIAM Publ., 1979. 被引量:1
  • 4E. Hansen. Global Optimization Using Interval Analysis. New York: Marcel Dekker, 1992. 被引量:1
  • 5A. V. Levitin. Introduction to the Design and Analysis of Algorithms. Boston: Addison-Wesley, 2003. 被引量:1
  • 6S. M. Robinson. Extension of Newton's method to nonlinear functions with values in a cone. Numerical Mathematics, 1972,19(4): 341-347. 被引量:1
  • 7J. W. Daniel. Newton's method for nonlinear inequalities.Numerical Mathematics, 1973, 21(5) : 381 - 387. 被引量:1
  • 8R. Hammer, M. Hocks, U. Kuliseh, et al. C++ Toolbox for Verified Computing Ⅰ. Berlin: Springer, 1995. 被引量:1
  • 9季晓慧,张健.求解布尔与非线性数值约束相混合的约束问题(英文)[J].软件学报,2005,16(5):659-668. 被引量:4
  • 10Wrswt. CXSC. http://www. math. uni-wuppertal. de/- xsc,2005-02-09. 被引量:1

二级参考文献15

  • 1Zhang J, Specification analysis and test data generation by solving Boolean combination of numeric constraints. In: Tse TH, Chen TY, eds. Proc. of the First Asia-Pacific Conference on Quality Software. Los Alamitos: IEEE Computer Society, 2000. 267-274. 被引量:1
  • 2Zhang J, Wang X. A constraint solver and its application to path feasibility analysis. International Journal of Software Engineering& Knowledge Engineering, 2001,11(2):139-156. 被引量:1
  • 3Hong H. RISC-CLP(Real): Logic programming with non-linear constraints over reals. In: Benhamou F, Colmerauer A, eds.Constraint Logic Programming: Selected Research. Cambridge: The MIT Press, 1993. 133-159. 被引量:1
  • 4Swedish Institute of Computer Science (SICS). SICStus Prolog User's Manual, Release 3.10.1, 2003. 被引量:1
  • 5Daniel JW. Newton's method for nonlinear inequalities. Numerical Mathematics, 1973,21:381-387. 被引量:1
  • 6Maranas CD, Floudas CA. Finding all solutions of nonlinearly constrained systems of equations. Journal of Global Optimization,1995,7(2):143-182. 被引量:1
  • 7Dantzig G. Linear Programming and Extensions. New Jersey: Princeton University Press, 1963.94-111. 被引量:1
  • 8Horst R, Paralos PM. Handbook of Global Optimization. Boston: Kluwer Academic Publishers, 1995.751-824. 被引量:1
  • 9Moore RE. Methods and Applications of Interval Analysis. Philadelphia: SIAM Publication, 1979, 被引量:1
  • 10Hammer R., Hocks M, Kulisch U, Ratz D. C++ Toolbox for Verified Computing I. Heidelberg: Springer, 1995. 312-342. 被引量:1

共引文献3

同被引文献12

  • 1季晓慧,张健.求解布尔与非线性数值约束相混合的约束问题(英文)[J].软件学报,2005,16(5):659-668. 被引量:4
  • 2欧阳应秀,唐敏,刘生礼,董金祥.几何约束求解的BFGS-混沌混合算法[J].浙江大学学报(工学版),2005,39(9):1334-1338. 被引量:6
  • 3JOAN-ARINYO, LUZON M V, SOTO A. Genetic algorithms for root multiseleetion in constructive geometric constraint solving [ J ]. Com- puter and Graphics,2003,27( 1 ) :51-60. 被引量:1
  • 4Van der MEIDEN H A, BRONSVOORT F. A non-rigid cluster rewri- ting approach to solve systems of 3D geometric constraints[ J]. GAD Computer Aided Design ,2010,42( 1 ) :36-49. 被引量:1
  • 5HE Chun-hua, ZHANG Xiang-wei, LV Wen-ge. A new approach for solving geometric constraint based on election-survey algorithm[ C ]// Proc of International Conference on Computer, Mechatronics, Control and Electronic Engineering. [ S. 1. ] : IEEE Computer Society,2010 : 427-430. 被引量:1
  • 6CAO Chun-hong, ZHANG Chang-sheng, WANG Li-min. An improved particle swarm optimization algorithm for geometric constraint solving problem[ C]//Proc of International Conference on Machine Learning and Cybernetics. [ S. 1. ] :IEEE Computer Society,2010:1835-1838. 被引量:1
  • 7THIERRY S E B. A particle-spring approach to geometric constraints solving [ C ]//Proc of the ACM Symposium on Applied Computing. [ S. 1. ] : Association for Computing Machinery,2011 : 1100-1105. 被引量:1
  • 8ZHANG You-hua, LIU Kun-qi, LIU Gang. A concurrent-hybrid evolu- tionary algorithm for geometric constraint solving[ C ]//Proc of the 5th International Symposium on Intelligence Computation and Applica- tions. [ S. l. ] : Springer, 2010 : 1-10. 被引量:1
  • 9YI Wan, CAO Chun-hong, ZHANG Chang-sheng. The geometric con- straint solving based on hybrid differential evolution and particle swarm optimization algorithm [ C 1//Proc of International Conference on Intelligent Control and Information Processing. [ S. 1. ] : IEEE Com- puter Society, 2010:692-695. 被引量:1
  • 10黄学良,陈立平,王波兴.求解三维装配约束闭环的投影变换方法[J].计算机辅助设计与图形学学报,2010,22(12):2138-2146. 被引量:4

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部