期刊文献+

复杂系统的图模型多智能体协同故障诊断 被引量:3

Graphical model-based multi-Agent coordination fault diagnosis for complex system
下载PDF
导出
摘要 为解决复杂、不确定系统的故障诊断实时推理问题,提出了基于图模型多连片贝叶斯网络架构下多智能体协同推理的故障诊断方法。该方法将一个复杂贝叶斯网分割成若干有重叠的贝叶斯子网,使监控网络的单个智能体被抽象为一个拥有局部知识的贝叶斯网,利用成熟的贝叶斯网推理算法可完成智能体的自主推理。随后,通过重叠的子网接口进行多智能体间消息的传播,实现了多智能体协同故障诊断推理。实验结果表明了基于图模型多智能体的协同故障诊断方法的正确性和有效性。 To solve the real-time inference problem in complex, uncertain system fault diagnosis, a multi-Agent cooperative inference fault diagnosis approach based on Multiple Sectioned Bayesian Network (MSBN), which is a kind of graphical models, was proposed. This method partitioned a complex Bayesian Network (BN) into some overlapped small BNs. Each Agent, which monitored the sub-system, was abstracted as a moderate size BN which owned the local knowledge about the sub-system. Autonomous inferences can be conducted by the Agents through existing BN inference algorithms. Then the multi-Agent cooperative inference for fault diagnosis can be taken through the message propagation along the overlapped interfaces among the sub nets. The experimental results demonstrate that the proposed graphical model-based multi-Agent coordination fault diagnosis approach is correct and effective.
出处 《计算机应用》 CSCD 北大核心 2010年第11期2906-2909,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(90205019 60774064)
关键词 不确定系统 故障诊断 多智能体 图模型 推理 uncertain system fault diagnosis multi-Agent graphical model inference
  • 相关文献

参考文献9

  • 1朱大奇.电子设备故障诊断原理与实践[M].北京:电子工业出版社,2002. 被引量:1
  • 2杨昌昊,胡小建,竺长安.从故障树到故障贝叶斯网映射的故障诊断方法[J].仪器仪表学报,2009,30(7):1481-1486. 被引量:41
  • 3RUSSELL S, NORVIG P. Artificial intelligence: A modern approach [ M]. 2nd ed. New Jersey: Prentice Hall, 2002. 被引量:1
  • 4CORREA M , BIELZA C , PAMIES-TEIXEIRA J . Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process[J]. Expert Systems with Applications: An International Journal, 2009, 36(3): 7270-7279. 被引量:1
  • 5JENSEN F V. Bayesian networks and decision graphs [ M]. Berlin: Springer-Verlag, 2001. 被引量:1
  • 6ZHANG Y, MANISTERSKI E, KRAUS S, et al. Computing the fault tolerance of multi-Agent deployment [ J]. Artificial Intelligence, 2009, 173(3/4): 437-465. 被引量:1
  • 7XIANG Y. Probabilistic reasoning in multi-Agent systems: a graphical models approach [ M]. Cambridge: Cambridge University Press, 2002. 被引量:1
  • 8XIANG Y, JENSEN F V, CHEN X. Inference in multiply sectioned Bayesian networks: methods and performance comparison [ J]. IEEE Transactions on Systems, Man, and Cybernetics, 2006, 36(3): 546 - 558. 被引量:1
  • 9XIANG Y, LESSER V. On the role of multiply sectioned Bayesian networks to cooperative multi-Agent systems [ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 2003, 33(4): 489- 501. 被引量:1

二级参考文献10

  • 1苑春苗,陈宝智,李畅.基于感知机的故障树最小割集算法[J].中国安全科学学报,2006,16(5):141-144. 被引量:4
  • 2DHILLON B S. Design reliability: fundamentals and applications[ M]. New York: CRC Press, LLC, 1999:167- 182. 被引量:1
  • 3MAHADEVAN S, ZHANG R, SMITH N. Bayesian networks for system reliability reassessment [ J ]. Structural Safety, 2001,23:231-251. 被引量:1
  • 4KRISTIAN G L, AADERS L. madsen maximal prime sub-graph decomposition of Bayesian networks[J]. IEEE Transactions, man and cybernetics, part B : cybernetics, 2002,32( 1 ) :21-31. 被引量:1
  • 5WEBER P, JOUFFE L. Complex system reliability modeling with Dynamic Object Oriented Bayesian Networks (DOOBN) [ J ]. Reliability Engineering and System Safety, 2006,91 : 149-162. 被引量:1
  • 6WILSON A G, HUZURBAZAR A V. Bayesian networks for multilevel system reliability [ J ]. Reliability Engineering and System Safety, 2007,92:1413-1420. 被引量:1
  • 7MADESN A L, JENSEN F V. Lazy propagation: A junction tree inference algorithm based on lazy evaluation [ J ]. Artificial Intelligence, 1999,113 ( 1-2 ) : 203-245. 被引量:1
  • 8RIPLEY B D. Pattern recognition and neural networks [M]. Cambridge: Cambridge University Press, 1996: 224-234. 被引量:1
  • 9钱彦岭,邱静,温熙森.基于有向图故障树自动建树方法的规范化描述及其应用研究[J].自动化学报,2003,29(5):767-772. 被引量:9
  • 10徐宾刚,屈梁生,陶肖明.转子故障贝叶斯诊断网络的研究[J].机械工程学报,2004,40(1):66-72. 被引量:25

共引文献40

同被引文献22

  • 1BAKKER T, WOUTERS H, ASSELT K, et al. A vision based row detection system for sugar beet[J]. Computers and Electronics in Agriculture, 2008, 60(1): 87-95.. 被引量:1
  • 2GOTTSCHALK R, BURGOS-ARTIZZU X P, RIBEIRO A, et al. Real-time image processing for the guidance of a small agricultural field inspection vehicle[J]. International Journal of Intelligent Systems Technologies and Applications, 2010, 8(1): 434-443. 被引量:1
  • 3ROVIRA-MA F, ZHANG Q, REID J F, et al. Hough-transform-based vision algorithm for crop row detection of an automated agricultural vehicle[J]. Journal of Automobile Engineering, 2005, 219(8): 999-1010. 被引量:1
  • 4PEARL J. Causality: models, reasoning and inference[M]. 2nd ed. Cambridge, UK: Cambridge University Press, 2009. 被引量:1
  • 5XIANG Y, SMITH J, KROES J. Multiagent Bayesian forecasting of structural time-invariant dynamic systems with graphical models[J]. International Journal of Approximate Reasoning, 2011, 52(7): 960-977. 被引量:1
  • 6XIANG Yang. Probabilistic reasoning in multiagent systems: a graphical models approach[M]. Cambridge, UK: Cambridge University Press, 2002. 被引量:1
  • 7XIANG Yang, JENSEN F V, CHEN Xiaoyun. Inference in multiply sectioned Bayesian networks: methods and performance comparison[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2006, 36(6): 546-558. 被引量:1
  • 8姚宏亮,王浩,张佑生,汪荣贵.多Agent动态影响图及其一种近似推理算法研究[J].计算机学报,2008,31(2):236-244. 被引量:14
  • 9连可,黄建国,龙兵.一种基于有向图模型的模糊多故障诊断算法[J].系统工程与电子技术,2008,30(3):568-571. 被引量:13
  • 10Tang Zheng Gao Xiaoguang.Research on the self-defence electronic jamming decision-making based on the discrete dynamic Bayesian network[J].Journal of Systems Engineering and Electronics,2008,19(4):702-708. 被引量:6

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部