期刊文献+

面向视频语义分析的局部敏感的可鉴别稀疏表示 被引量:3

Locality-sensitive Discriminant Sparse Representation for Video Semantic Analysis
下载PDF
导出
摘要 视频语义分析已经成为人们研究的热点。在传统稀疏表示方法中,相似视频特征未必能产生相近稀疏表示结果。在基于稀疏表示的视频语义分析中,假定相似的视频数据样本的稀疏表示也相似,即两个相似视频特征的稀疏系数之间的距离较小。为了提高视频语义分析的准确性,基于该假设提出一种面向视频语义分析的局部敏感的可鉴别稀疏表示方法。该方法在局部敏感稀疏表示中引入基于稀疏系数的鉴别损失函数,优化构建稀疏表示的字典,使稀疏表示特征满足类内离散度小、类间离散度大的Fisher准则,并建立可鉴别稀疏模型。为验证所提方法的有效性,在相关视频数据库中将其与多种算法进行对比,实验结果表明,该方法显著地提高了视频特征稀疏表示的鉴别性,有效地提高了视频语义分析的准确性。 Video semantic analysis has been a research hotspot. Traditional sparse representation methods cannot pro- duce similar coding result when the input video features are close to each other. We assumed that similar video features should he encoded as similar sparse codes in the process of video semantic analysis based on sparse representation. In other words, the similar video features should have smaller distance between their sparse codes. In order to improve the accuracy of video semantic analysis, locality-sensitive discriminant sparse representation(LSDSR) based on the hypothe- sis for video semantic analysis was developed. In proposed method, discriminant loss function based on sparse coefficient is introduced into the locality-sensitive sparse representation. An optimization dictionary is generated with the con- straint. In the process, the sparse coding coefficients have both small within-class scatter and large between-class scatter using Fisher criterion, so as to build the discriminant sparse model in the LSDSR. The proposed method was extensively evaluated on related video databases in comparison with existing sparse representation methods. The experimental re- sults show that this method significantly enhances the power of discrimination of sparse representation features, and consequently improves the accuracy of video semantic analysis.
出处 《计算机科学》 CSCD 北大核心 2015年第9期313-318,F0003,共7页 Computer Science
基金 国家自然科学基金项目:基于稀疏表示和超图的视频事件语义分析方法研究(61170126) 江苏省高校自然科学研究项目:数据内在结构和稀疏表示的联合建模与学习(14KJB520007) 江苏大学高级人才科研启动基金:数据内在结构驱动的稀疏表示分类与降维方法研究(14JDG037)资助
关键词 视频语义 稀疏表示 局部敏感 可鉴别 Video semantic, Sparse representation, Locality-sensitive, Discriminant
  • 相关文献

参考文献20

  • 1Zou Yue-xian,Shi Guang-yi,Shi Hang,et al.Trafficincident classification at intersections based on image sequences by HMM/SVM classifiers[J].Multimedia Tools and Applications,2011,52(1):133-145. 被引量:1
  • 2Xu Gu,Ma Yu-fei,Zhang Hong-jiang,et al.An HMM-basedframework for video semantic analysis[J].IEEE Transactions on Circuits and Systems for Video Technology,2005,15(11):1422-1433. 被引量:1
  • 3You Jun-yong,Liu Gui-zhong,Perkis A.A semantic framework for video genre classification and event analysis[J].Signal Processing:Image Communication,2010,25(4):287-302. 被引量:1
  • 4Elad M,Aharon M.Image denoising via sparse and redundantrepresentations over learned dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3736-3745. 被引量:1
  • 5Mairal J,Elad M,Sapiro G.Sparse representation for color ima-ge restoration[J].IEEE Transactions on Image Processing,2008,17(1):53-69. 被引量:1
  • 6Bryt O,Elad M.Compression of facial images using the K-SVD algorithm[J].Journal of Visual Communication and Image Representation,2008,19(4):270-282. 被引量:1
  • 7Han Ya-hong,Wu Fei,Zhuang Yue-ting,et al.Multi-label transfer learning with sparse representation[J].IEEE Transactions on Circuits and Systems for Video Technology,2010,20(8):1110-1121. 被引量:1
  • 8Aharon M,Elad M,Bruckstein A.K-SVD:An algorithm for designing over-complete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322. 被引量:1
  • 9Yang Meng,Zhang Lei.Gabor feature based sparse representation for face recognition with gabor occlusion dictionary[C]∥Proceedings of the 11th European Conference on Computer Vision.2010:448-461. 被引量:1
  • 10Zhang Qiang,Li Bao-xin.Discriminative K-SVD for dictionary learning in face recognition[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Re-cognition.2010:2691-2698. 被引量:1

二级参考文献12

  • 1王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:32
  • 2Geetha P,Narayanan V.A survey of content-based vi-deo retrieval[J].Journal of Computer Science,2008,4(6):474-486. 被引量:1
  • 3Truong B T,Venkatesh S.Video abstraction:a syste-matic review and classification[J].ACM Transactionson Multimedia Computing,Communications and Applica-tions,2007,doi:10.1145/1198302.1198305. 被引量:1
  • 4Ciocca G,Schettini R.An innovative algorithm for keyframe extraction in video summarization[J].Journal ofReal-Time Image Processing,2006,1(1):69-88. 被引量:1
  • 5Zhuang Y T,Rui Y,Huang T S,et al.Adaptive key-frame extraction using unsupervised clustering[C]∥Proceedings of the 1998 IEEE International Conferenceon Image Processing.Los Alamitos:IEEE Comp Soc,1998:866-870. 被引量:1
  • 6Man Hua,Peng Jiang.A feature weighed clusteringbased key-frames extraction method[C]∥Proceedings ofthe 2009 International Forum on Information Technologyand Applications.Piscataway:IEEE Computer Society,2009:69-72. 被引量:1
  • 7Liu Dianting,Shu Meiling,Chen Chao,et al.Integra-tion of global and local information in videos for keyframe extraction[C]∥Proceedings of 2010 IEEE Inter-national Conference on Information Reuse and Integra-tion.Piscataway:IEEE Computer Society,2010:171-176. 被引量:1
  • 8Tian Xiang,Yang Haidong,Deng Feiqi.A novel artifi-cial immune network algorithm[C]∥Proceedings of the2006 International Conference on Machine Learning andCybernetics.Piscataway:IEEE Computer Society,2006:2159-2165. 被引量:1
  • 9Li Xianhui,Zhan Yongzhao,Ke Jia,et al.Shot retrie-val based on fuzzy evolutionary ainet and hybrid features[J].Computers in Human Behavior,2011,27(5):1571-1578. 被引量:1
  • 10Graaff A J,Engelbrecht A P.A local network neighbor-hood artificial immune system for data clustering[C]∥Proceedings of the 2007 IEEE Congress on EvolutionaryComputation.Piscataway:IEEE,2007:260-267. 被引量:1

共引文献8

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部