期刊文献+

基于稀疏化图结构的转导多标注视频概念检测算法 被引量:2

Sparse Graph Based Transductive Multi-Label Learning for Video Concept Detection
原文传递
导出
摘要 提出一种基于稀疏化图结构的转导多标注视频概念检测算法.首先,该方法通过信号稀疏化表达方法挖掘样本间视觉相似性关系与概念间分布相关性关系.然后,基于离散隐马尔可夫随机场构建多标注稀疏化图结构完成转导半监督视频概念检测.相关性信息的稀疏化表达可有效去除冗余信息的影响,降低图分类算法的问题复杂度,提高概念检测效率和分类效果.算法在TRECVID2005数据集上进行实验,并与多种有监督、半监督分类算法进行结果比较.实验结果验证该算法的有效性. A sparse graph based transductive multi-label learning method is proposed for video concept detection. Firstly, the sparse signal representation theory is exploited to mine the point-wise similarity relationships and the concept-wise distribution correlation relationships. Then, the multi-label sparse graph structure is constructed based on discrete hidden Markov random field to conduct transductive semi-supervised video concept detection. The sparse representation for correlative information can remove the negative effect of redundant information, reduce the complexity of graph-based classification problem and improve the model efficiency and discriminability. The proposed method is evaluated on the TRECVID 2005 dataset, and extensive comparative experiments are conducted with respect to multiple supervised and semi-supervised classification methods. The experimental results demonstrate the effectiveness of the proposed method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第6期825-832,共8页 Pattern Recognition and Artificial Intelligence
关键词 稀疏化描述 概念检测 多标注 半监督学习 Sparse Representation, Concept Detection, Multi-Label, Semi-Supervised Learning
  • 相关文献

参考文献23

  • 1Zhu Xiaojin. Semi-Supervised Learning Literature Survey. Computer Sciences Technical Report, 1530. Madison, USA: University of Wisconsin, 2008. 被引量:1
  • 2Zhu Xiaojin, Ghahramani Z, Lafferty J. Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions// Proc of the 20th International Conference on Machine Learning. Washington, USA, 2003: 912 -919. 被引量:1
  • 3Zhou Dengyong, Olivier B, Lal T N, et al. Learning with Local and Global Consistency//Thrun S, Saul L K, Scholkopf B, eds. Ad- vances in Neural Information Processing Systems. Cambridge, USA : MIT Press, 2004, XVI: 321 -328. 被引量:1
  • 4Qi Guojun, Hua Xiansheng, Rui Yong, et al. Correlative Multi- Label Video Annotation//Proc of the 15th International Conference on Multimedia. Augsburg, Germany, 2007:17 -26. 被引量:1
  • 5Chen Gang, Song Yanqiu, Wang Fei, et al. Semi-Supervised Multi- Label Learning by Solving a Sylvester Equation // Proc of the 8th SIAM Conference on Data Mining. Atlanta, USA, 2008:410-419. 被引量:1
  • 6Liu Yi, Jin Rong, Yang Liu. Semi-Supervised Multi-Label Learning by Constrained Non-Negative Matrix Factorization//Proc of the 21 st National Conference on Artificial Intelligence. Saint Paul, USA,2006, I: 421 -426. 被引量:1
  • 7Wang Jingdong, Zhao Yinghai, Wu Xiuqing, et al. Transductive Multi-Label Learning for Video Concept Detection//Proc of the 1 st ACM International Conference on Multimedia Information Retrieval. Vancouver, Canada, 2008 : 298 - 304. 被引量:1
  • 8Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Lo- cally Linear Embedding. Science, 2000, 290(5500) : 2323 -2326. 被引量:1
  • 9Wang Fei, Zhang Changshui. Label Propagation through Linear Neighborhoods // Proc of the 23rd International Conference on Machine Learning. Edinburgh, UK, 2006 : 985 - 992. 被引量:1
  • 10Rao R P N, Olshausen B A, Lewicki M S. Probahilistic Models of the Brain: Perception and Neural Function. Cambridge, USA: MIT Press, 2002. 被引量:1

同被引文献28

  • 1RICHARDS J A, JIA X. Using Suitable Neighbors to Augment the Training Set in Hyperspectral Maximum Likelihood Classification[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 774-777. 被引量:1
  • 2PLAZA J, PLAZA A, PEREZ R, et al. Paralled Classification of Hyperspectral Images Using Neural Networks[J]. Compu tational Intelligence for Remote Sensing, 2008, 133 : 1,93-216. 被引量:1
  • 3MOUNTRAKIS G, IM J, OGOLE C. Support Vector Machines in Remote Sensing: A Review[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 6G ( 3 ) : 247-259. 被引量:1
  • 4K1M W, CRAWFORD M M. Adaptive Classification for Hyperspectral Image Data Using Manifold Regularization Kernel Machines[J] IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(lt): 4110 4121. 被引量:1
  • 5MILLER D J, UYAR H S. A Mixture of Experts Classifier with Learning Based on Both Labeled and Unlabelled Data [C]//Advances in Neural Information Processing Systems 9. Cambridge : MIT Press. 1997 : 571-577. 被引量:1
  • 6NIGAM K, MCCALLUM A K, THRUM S,et al. Text Classification from Labeled and Unlabeled Documents Using EM[J]. Machine Learning, 2000,39(2-3) :103 -134. 被引量:1
  • 7RATSABY J, VENKATESH S. Learning from a Mixture of Labeled and Unlabeled Examples with Parametric Side Information[C]//Proceedings of the Eighth Annual Confer- ence on Computational Learning Theory. New York: [s.n.], 1995: 412-417. 被引量:1
  • 8CASTELLI V, COVER T. The Exponential Value of Labeled Samples[J]. Pattern Recognition Letters, 1995,16 (1): 105-111. 被引量:1
  • 9YAROWSKY D. Unsupervised Word Sense Disambiguation Rivaling Supervised Methods[C]/,/Proceedings of the 33rd annual meeting of the Association of Computational Linguistics. Cambridge : [s.n. ], 1995 : 189-196. 被引量:1
  • 10RILOFF E, WIEBE J, WILSON T. Learning Subjective Nouns Using Extraction Patter:: Bootstrapping [ C] // Proceedings of the 7th Conference on Natural Language Learning. Reykiavik: [s.n.] ,2003. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部