期刊文献+

基于马尔可夫逻辑的中文零指代消解 被引量:5

Chinese Zero Anaphora Resolution with Markov Logic
下载PDF
导出
摘要 中文零指代消解问题包括零指代项的识别和零指代项的消解2个相互关联的子任务.传统的方法在解决该问题时,往往不考虑2个子任务间的关联关系,比如识别出的零指代项必须被消解以及发生消解的必须是零指代项等约束.基于马尔可夫逻辑网络模型可以将零指代项的识别和零指代项的消解2个子任务融合在统一的机器学习框架下进行联合推断与联合学习,采用局部规则分别针对零指代项的识别和消解进行预测,采用全局规则描述这2个子任务间的关联关系.基于OntoNotes3.0的中文数据集上的实验结果显示,基于马尔可夫逻辑网络的联合学习模型相比于独立学习模型以及多个baseline方法能够获得更好的实验效果. Chinese zero anaphora resolution includes two subtasks:zero pronoun detection and zero anaphora resolution,which are correlated with each other.Zero pronoun detection means to recognize all the zero anaphors in a given text,which mainly include null subject or null object,and exist widely in Chinese,Japanese and Italian.Zero anaphora resolution means to determine the antecedent for each recognized zero anaphor,which has already appeared as a noun,pronoun or common noun phrase before the detected zero anaphora in the previous text.Traditional methods to solve Chinese zero anaphora resolution problem generally employ some common-used learning features to construct independent classifiers for zero pronoun detection and zero anaphora resolution,but it cannot capture association relationship between these two subtasks,e.g.recognized zero anaphora must be resolved or the one to be resolved must be zero anaphora and so on.In our method,these two subtasks are combined into a unified machine learning framework with Markov logic to make joint inference and joint learning.We use local formulas to describe zero pronoun detection and zero anaphora resolution respectively,and use global formulas to represent the association relationship between these two subtasks.We find that joint learning model which makes learning with inference can acquire more effective feature weights than independent learning model which just makes learning without inference.Experimental results on OntoNotes3.0Chinese dataset show that our joint learning model can achieve better results compared with independent learning model and other baseline methods.
作者 宋洋 王厚峰
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第9期2114-2122,共9页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2015AA015402) 国家自然科学基金项目(61370117 61333018) 国家社会科学基金重大项目(12&ZD227)
关键词 马尔可夫逻辑网络 中文零指代消解 零指代项识别 联合学习 全局规则 局部规则 Markov logic networks Chinese zero anaphora resolution zero pronoun detection joint learning global rule local rule
  • 相关文献

参考文献14

  • 1Zhao Shangheng, Ng Hwee Tou. Identification and resolution of Chinese zero pronouns: A machine learning approach [C/OL] //Proc of the 2007 Joint Cont" on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). 2007 : 541- 550. [ 2014-06-28]. http://www, aclweb, org/anthology/D/ D07/D07 1057. pdf. 被引量:1
  • 2Kong Fang, Zhou Guodong, A tree kernel based unified framework for Chinese zero anaphora resolution [C/OL] // Proc of 2010 Conf on Empirical Methods in Natural Language Processing. 2010: 882-891. [2014-06-28], http://www. aclweh, org/anthology/D/I)10/D10-1086, pdf. 被引量:1
  • 3Iida R, Poesio M. A cross-lingual ILP solution to zero anaphora resolution [C/OL] //Proc of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. 2011: 804-813. [2014-06- 28]. http://www, aclweb, org/anthology/P/Pll/P11-1081. pdf. 被引量:1
  • 4Yeh Chinglong, Chen Yichun. Zero anaphora resolution in Chinese with shallow parsing[J]. Journal of Chinese Language and Computing, 2004, 17(1) :41-56. 被引量:1
  • 5陈平.汉语零形回指的话语分析[J].中国语文,1987(5):363-378. 被引量:18
  • 6翁依琴..汉语零形回指的认知研究[D].复旦大学,2006:
  • 7黄娴,张克亮.汉语零形回指研究综述[J].中文信息学报,2009,23(4):10-15. 被引量:9
  • 8Grosz B, Joshi A, Weinstein S. Centering: A framework for modelling the local coherence of discourse[J]. Computational Linguistics, 1995, 21(2): 203 -225. 被引量:1
  • 9Converse P S. Pronominal anaphora resolution [D]. Philadelphia, Pennsylvania: University of Pennsylvania, 2006. 被引量:1
  • 10Hobbs J R. Resolving pronoun references [J]. Lingua, 1978, 44(4): 311-338. 被引量:1

二级参考文献31

共引文献25

同被引文献38

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部