期刊文献+

前馈网络的一种高精度鲁棒在线贯序学习算法 被引量:4

An Accurate and Robust Online Sequential Learning Algorithm for Feedforward Networks
下载PDF
导出
摘要 基于离散傅里叶变换-极限学习机(DFT-ELM)提出了一种新的单隐层前馈神经网络在线贯序学习算法,命名为"在线贯序-离散傅里叶变换-极限学习机"(OS-DFT-ELM).该算法能够逐个或逐段学习数据,随着新数据的逐渐到达,单隐层前馈神经网络的内权矩阵和外权矩阵得到逐步调整.该算法与在线贯序-极限学习机(OS-ELM)相比,具有更高的精度和鲁棒性.同时,通过实验和分析,表明OS-DFT-ELM具有优良性能. In this paper,a kind of accurate and robust online sequential learning algorithm was proposed for single hidden layer feedforward networks.The algorithm is referred to as online sequential discrete Fourier transform-extreme learning machine(OS-DFT-ELM).This approach is able to learn data one-by-one or chunk-by-chunk.During the growth of the data,input weights and output weights are adjusted incrementally.The proposed algorithm has a higher degree of accuracy and robustness compared to the approach referred to as online sequential-extreme learning machine(OS-ELM).Two simulation examples were presented to show the excellent performance of the proposed approach.
作者 卢诚波 梅颖
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第8期1137-1143,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(11171137) 浙江省自然科学基金项目(LY13A010008)资助
关键词 单隐层前馈神经网络 在线贯序算法 极限学习机 single hidden layer feedforward networks online sequential learning machine extreme learning machine
  • 相关文献

参考文献15

  • 1ManZ H, LeeK, Wang D H, etal. Robust single- hidden layer feedforward network-based pattern clas- sifier [J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(12) :1974-1986. 被引量:1
  • 2Liang N Y, Huang G B, Saratchandran P, et al. A fast and accurate online sequential learning algorithm for feedforward networks [J]. IEEE Transactions on Neural Networks,2006,17(6) : 1411-1423. 被引量:1
  • 3Haykin S. Neural networks and learning machines [M]. 3rd ed. New Jersey:Pearson, Prentice-Hall, 2009. 被引量:1
  • 4Kumar S. Neural networks [M]. New York.. McGraw-Hill Companies, Inc,2006. 被引量:1
  • 5Yao X. Evolving artificial neural networks [J]. Pro- ceedings of the IEEE, 1999,87 (9): 1423-1447. 被引量:1
  • 6Zhang G, Neural networks for classification: a survey [J]. IEEE Transactions on Systems, Man and Cyber- netics:Part C,2000(30) :451-462. 被引量:1
  • 7Hertz J, Krogh A, Palmer R G. Introduction to the theory of neural computations [M]. Boston: Addi- son-Wesley Publishing Company, 1991. 被引量:1
  • 8Huang G B, Chen L, Slew C K. Universal approxi- mation using incremental constructive feedforward networks with random hidden nodes [J ]. IEEE Transactions on Neural Networks, 2006, 17 (4) : 879- 892. 被引量:1
  • 9Igelnik B, Pao Y H. Stochastic choice of basis func- tions in adaptive function approximation and the func- tional-link net [J]. IEEE Transactions on Neural Net- works,1995,6 (6) :1320-1329. 被引量:1
  • 10乔俊飞,韩红桂.前馈神经网络分析与设计[M].北京:科学出版社,2013:10-11,30-37. 被引量:5

共引文献4

同被引文献19

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部