期刊文献+

基于投影最小二乘回归子空间分割的基因表达数据聚类 被引量:8

Gene Expression Data Clustering Based on Projection Least Square Regression Subspace Segmentation
下载PDF
导出
摘要 子空间分割方法是一种重要的机器学习方法,现有的子空间分割方法一般在原样本空间上进行研究.文中借鉴现有的降维方法将投影技术与最小二乘回归子空间分割方法结合,提出投影子空间分割的基因表达数据聚类方法.该方法通过交替优化求解投影矩阵和重构矩阵,同时实现降维和聚类.在6个基因表达数据集上的实验表明文中方法的有效性. Subspace segmentation method is an important method for machine learning. The existing researches on subspace segmentation method are generally on the original sample space. Advanced by existing dimensional reduction methods, a gene expression data clustering method based on projection subspace segmentation is proposed by joining projection method and least square regression based subspace segmentation. Projection matrix and remodeling matrix is got by using alternate optimization, and dimension reduction and cluster is 'realized simultaneously. The experimental results on six gene expression datasets illustrate the validity of the proposed method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第8期728-734,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.71273053) 福建省自然科学基金项目(No.2014J01009)资助
关键词 基因表达数据 聚类 最小二乘回归 子空间分割 投影 Gene Expression Data, Clustering, Least Square Regression, SubspaceSegmentation, Projection
  • 相关文献

参考文献28

  • 1Brown PO, Botstein D. Exploring the New World of the Genome with DNA Microarrays. Nature Genetics, 1999, 21(zl): 33-37. 被引量:1
  • 2Bolon-Canedo V, sanchez-MarooN, Alonso-Betanzos A. An Ensemble of Filters and Classifiers for Microarray Data Classification. Pattern Hecognition , 2012, 45 ( I ) : 531-539. 被引量:1
  • 3Zheng C H, Zhang L, Ng T Y, et at. Metasample-Based Sparse Representation for Tumor Classification. IEEE/ ACM Trans on Computational Biology and Bioinformatics, 2011,8(5): 1273-1282. 被引量:1
  • 4de Souto M C P, Costa I G, de Araujo D SA, et at. Clustering Cancer Gene Expression Data: A Comparative Study. BMC Bioinformatics , 2008, 9 ( I ) : 497 - 510. 被引量:1
  • 5Bayo A E, Granillo P M. Clustering Gene Expression Data with a Penalized Graph-Based Metric. BMC Bioinformatics, 2011, 12 (1):2-19. 被引量:1
  • 6WangJ J Y, Wang X L, Gao X. Non-negative Matrix Factorization by Maximizing Correntropy for Cancer Clustering. BMC Bioinfonnatics, 2013,14(1): 107-117. 被引量:1
  • 7Richards A L, Holmans P, O'Donovan M C, et at. A Comparison of Four Clustering Methods for Brain Expression Microarray Data. BMC Bioinformatics , 2008, 9 ( I) : 490-506. 被引量:1
  • 8Jiang D X, Tang C, Zhang A D. Cluster Analysis for Gene Expression Data: A Survey. IEEE Trans on Knowledge and Data Engineering, 2004, 16( II): 1370-1386. 被引量:1
  • 9Golub T R, Slonim D K, Tamayo P, et at. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring, Science, 1999,286(5439): 531-537. 被引量:1
  • 10Eisen M B, Spellman P T, Brown PO, et al, Cluster Analysis and Display of Genome-Wide Expression Patterns. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(25) : 14863-14868. 被引量:1

同被引文献15

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部