期刊文献+

基于稀疏类别保留投影的基因表达数据降维方法 被引量:4

New Method of Dimensionality Reduction for Gene Expression Data Based on Sparse Class Preserving Projection
下载PDF
导出
摘要 针对基因表达数据高维小样本特性所带来的维数灾难问题,结合回归和类别保留投影方法,提出一种新的基因表达数据降维方法,叫稀疏类别保留投影.相比类别保留投影,能有效避免类别保留投影在基因表达数据降维上存在的矩阵奇异和过拟合问题.通过对真实基因表达数据进行数据可视化和分类识别,验证了方法的有效性. To solve the problem of the curse of dimensionality of gene expression data due to the characteristic of high dimension low sample size, a new method of dimensionality reduction for gene expression data, called sparse class pre- serving projection (SCPP) is proposed,by combining regression and class preserving projection(CPP). Compared to CPP, SCPP can avoid the problems of matrix singularity and over-fitting. Experiments are performed on gene expression data for visualization and sample classification, and the results confirm the effectiveness of the method.
作者 王文俊
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第4期873-877,共5页 Acta Electronica Sinica
基金 中央高校基本科研业务费专项资金(No.JB140310)
关键词 基因表达数据 高维小样本 类别保留投影 回归 gene expression data high dimension and low sample size class preserving projection regression
  • 相关文献

参考文献26

  • 1Rung J,Brazma A. Reuse of public genome-wide gene ex- pression data[ J ]. Nature Reviews Genetics, 2013,14 ( 2 ) : 89 - 99. 被引量:1
  • 2于攀,叶俊勇.基于谱回归和核空间最近邻的基因表达数据分类[J].电子学报,2011,39(8):1955-1960. 被引量:6
  • 3Pham TD, Wells C, Crane DI. Analysis of microarray gene expression data[ J]. Current Bioinformatics ,2006,1 ( 1 ) :37 -53. 被引量:1
  • 4Wang Z, Palade V. Fuzzy Models for High Dimensional Cancer Gene Expression Data Classification[ D ]. Universi- ty of Oxford,2013. 被引量:1
  • 5Zhang YJ, Xuan JH, Clarke R, Ressom HW. Module-based breast cancer classification[ J]. International Journal of Da- ta Mining and Bioinfomlatics ,2013,7 ( 3 ) :284 - 302. 被引量:1
  • 6王年,庄振华,范益政,李学俊,王继.癌症基因分类的Laplace谱方法[J].电子学报,2011,39(7):1594-1597. 被引量:2
  • 7Mao Z, Cai W, Shao X. Selecting significant genes by ran- domization test for cancer classification using gene expres- sion data [ J ]. Journal of Biomedical Informatics, 2013,46 (4) :594-601. 被引量:1
  • 8Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines[ J]. Mach Learn, 2002,46 ( 1 - 3 ) : 389 - 422. 被引量:1
  • 9Chen KH, Wang K J, Tsai ML, et al. Gene selection for cancer identification:a decision tree model empowered byparticle swarm optimization algorithm [ J ]. BMC Bioinfor- matics ,2014,15 ( 1 ) :Article ID 49. 被引量:1
  • 10Cui Y, Zheng CH, Yang J, Sha W. Sparse maximum mar- gin discriminant analysis for feature extraction and gene selection on gene expression data[ J]. Computers in Biolo- gy and Medicine, 2013,43 ( 7 ) :933 - 941. 被引量:1

二级参考文献46

  • 1李颖新,刘全金,阮晓钢.一种肿瘤基因表达数据的知识提取方法[J].电子学报,2004,32(9):1479-1482. 被引量:13
  • 2李颖新,阮晓钢.基于基因表达谱的肿瘤亚型识别与分类特征基因选取研究[J].电子学报,2005,33(4):651-655. 被引量:18
  • 3王年,范益政,韦穗,梁栋.基于图的Laplace谱的特征匹配[J].中国图象图形学报,2006,11(3):332-336. 被引量:32
  • 4赵丽红,孙宇舸,蔡玉,徐心和.基于核主成分分析的人脸识别[J].东北大学学报(自然科学版),2006,27(8):847-850. 被引量:16
  • 5蔡立军,林亚平,卢新国,易叶青,李小龙.基于遗传算法的基因分类[J].电子学报,2006,34(11):2115-2119. 被引量:5
  • 6Baldi P, Hatfield G. DNA Microarmys and Gene Gxpression: from Experiments to Data Analysis and Modeling [ M ]. Cambridge: Cambridge University Press, 2002.51 - 84. 被引量:1
  • 7L Conde, A Mateo s, J Herren, et al. Unsupervised reduction of the dimensionality followed by supervised learning with a per- ceptron improves the classification of conditions in DNA Mi- croatray gene expression datal A ]. Bourlard H. Proceedings of the 2002 12th IEEE Workshop on Neural Networks for Signal Processing[ C]. New York, USA: IEEE, 2004.77 - 86. 被引量:1
  • 8Zhou Jin,Pan Yuqi, Chen Yuehui, Liu Yang. Ensemble classi- tiers based on kernel PCA for cancer data classification[ A]. Huang Deshuang. Emerging Intelligent Computing Technology and Applications: With Aspects of Artificial Intelligence [ C ]. Berlin, Germany: Springer-Verlag, 2009.955- 964. 被引量:1
  • 9Tu Chunping, Gan I.an, Yu Zhongping. Based on an improved pre-PCA + LDA classifier design in tumor cells[ A]. CCTAE 2010-2010 International Conference on Computer and Commu- nication Technologies in Agriculture Engineering [ C ]. Piscataway, NJ, USA: IEEE,2010.95 - 98. 被引量:1
  • 10Sharma A, Paliwal K K. Cancer classification by gradient LDA technique using microarray gone expression data[ J]. Data and Knowledge Engineering,2008,66(2) :338 - 347. 被引量:1

共引文献7

同被引文献14

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部