期刊文献+

投影相关自适应子空间分割 被引量:1

Projection correlation adaptive subspace segmentation
下载PDF
导出
摘要 在构造仿射矩阵时,满足稀疏性就会降低其分组效应,反之,又不利于数据的选择.针对这些问题,提出投影相关自适应子空间分割方法.通过引入迹lasso,自适应地根据样本数据的相关性构造仿射矩阵,同时提取出有利于类别识别的特征.在6个基因表达数据上的实验结果表明,该方法优于现有子空间分割方法. As constructing the affine matrix, satisfying data sparsity will reduce its group effect, on the contrary, it does not help to select data. To solve these problems, we propose projection correlation adaptive subspace segmentation (PCASS). Trace lasso can determine affine matrix adaptively by the correlation of the sample data, and can extract features those are useful to discriminate types as well. Experimental results on six gene expression data show that this method is superior to the other existing subspace segmentation.
作者 陈慧娟 陈晓云 CHEN Huijuan CHEN Xiaoyun(College of Mathematies and Computer Seienee, Fuzhou University, Fuzhou, Fujian 350116, China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2017年第1期44-49,共6页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2014J01009)
关键词 子空间分割 基因表达数据 降维 subspace segmentation gene expression data dimension reduction
  • 相关文献

参考文献2

二级参考文献31

  • 1阮晓钢,晁浩.肿瘤识别过程中特征基因的选取[J].控制工程,2007,14(4):373-375. 被引量:15
  • 2Lander E.S..Array of hope.Nature Genetics,1999,21(Supplement 1):3~4. 被引量:1
  • 3Ramaswamy S.,Golub T.R..DNA microarrays in clinical oncology.Journal of Clinical Oncology,2002,20 (7):1932 ~1941. 被引量:1
  • 4Ramaswamy S.,Tamayo P.,Rifkin R.et al..Multiclass cancer diagnosis using tumor gene expression signatures.Proceedings of the National Academy of Sciences of the United States of America,2001,98(26):15149~15154. 被引量:1
  • 5Golub T.R.,Slonim D.K.,Tamayo P.et al..Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring.Science,1999,(5439):531~537. 被引量:1
  • 6Hedenfalk I.,Duggan D.,Chen Y.et al..Gene-expression profiles in hereditary breast cancer.New England Journal of Medicine,2001,344(8):529~548. 被引量:1
  • 7Li X.,Rao S.,Zhang T.et al..An ensemble method for gene discovery based on DNA microarray data.Science in China(Series C),2004,47(5):396~405. 被引量:1
  • 8Tibshirani R.,Hastie T.,Narasimhan B.et al..Diagnosis of multiple cancer types by shrunken centroids of gene expression.Proceedings of the National Academy of Sciences of the United States of America,2002,99(10):6567~6572. 被引量:1
  • 9Khan J.,Wei J.S.,Ringner M.et al..Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks.Nature Medicine,2001,7(6):673~679. 被引量:1
  • 10Guyon I.,Weston J.,Barnhill S.et al..Gene selection for cancer classification using support vector machines.Machine Learning,2000,46(13):389~422. 被引量:1

共引文献47

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部