期刊文献+

面向大数据环境的决策信息需求通用描述语言 被引量:2

A general language for decision information requirement description on mining big data
下载PDF
导出
摘要 制定重大决策需要全方面的数据支持,而大数据时代的到来却让决策信息搜集更加困难。数据多样性和价值密度低的特点,让决策者耗费大量时间在信息需求的表达上。设计了一种通用的信息需求描述语言,及其为数据库、发布/订阅、搜索引擎等常见信息资源解析转换的方法,使得用户可以通过一种统一的方式将相关异构信息全部搜集到。实验表明,其基于本体的语义描述能力能够有效屏蔽数据异构性,提高信息搜集的全面性和准确性。 Important decision making requires all-source data support. However, in the age of big data, collecting decision information becomes even more difficult due to data variety and heterogeneity. To get precise search results, users spend much time on information requirement expression, which causes low efficiency. We design a general language for information requirement description, along with its translation methods for common resources such as databases, publish-subscribe systems and search en- gines. Thus all-source heterogeneous information can be collected by one request in a unified format. Test results demonstrate that its ability to express requirement semantics can solve the cross-area heterogeneity problem of big data with the aid of ontology techniques, and therefore improves the precision and comprehension of information collection.
出处 《计算机工程与科学》 CSCD 北大核心 2015年第8期1436-1443,共8页 Computer Engineering & Science
基金 国防973计划资助项目
关键词 大数据 决策支持 信息搜集 需求描述 big data decision support information collection ~ requirement description
  • 相关文献

参考文献2

二级参考文献48

  • 1孔令波,唐世渭,杨冬青,王腾蛟,高军.XML数据的查询技术[J].软件学报,2007,18(6):1400-1418. 被引量:72
  • 2Ding Li, Pan R, Finin T, et al. Finding and ranking knowledge on the semantic Web[C]//Proe of 4th International Semantic Web Conference. LNCS 3729. Galway,Ireland,2005 : 156-170. 被引量:1
  • 3He Hao, Wang Hai-xun, Yang Jun, et al. Blinks: Ranked Keyword Searches on Graphs[C]//Proc of the ACM SIGMOD In- ternational Conference on Management of Data. Beijing, China, 2007:305-316. 被引量:1
  • 4ChengGong, Ge Wei-yi, Qu Yu-zhong. Falcons: searching and browsing entities on the semantic Web[C]//Proc. of the 17th International Conference on World Wide Web. Beijing China, 2008:1101-1102. 被引量:1
  • 5Ning Xiao-min, Jin Hai, Wu Hao. RSS: A framework enabling ranked search on the semantic web[J]. Information Processing and Management, 2008,44 (2): 893-909. 被引量:1
  • 6Li Guo-liang, Ooi B, Feng Jian-hua, et al. EASE.. An Effective 3- in-1 Keyword Search Method for Unstructured, Semi-structured and Structured Data[C]//Proc of International Conference on Management of Data / Principles of Database Systems. Vancou- ver, BC, Canada, 2008 : 903-914. 被引量:1
  • 7Ning Xiao-min,Jin Hai,Jia Wei-jia, et al. Practical and effective IR-style kcyword search over semantic web [J]. Information Processing and Management, 2009,45 (2) : 263-271. 被引量:1
  • 8Lei Yuan-gui, Uren V, Motta E. Semseareh: A Search Engine for the Semantic Web[C]//Proc of the EKAW. LNAI 4248. Podebrady, Czech Republic, 2006 : 238-245. 被引量:1
  • 9Zhou Qi, Wang Chong, Xiong Miao, et al. SPARK: Adapting Keyword Query to Semantic Search[C]//Proc of the ISWC. LNCS 4825. Busan, Korea, 2007 : 649-707. 被引量:1
  • 10Tran T,Cimiano P,Rudolph S, et al. Ontology-based Interpreta tion of Keywords for Semantic Search[C]//Proe of the ISWC. LNCS 4825. Busan, Korea, 2007 : 523-536. 被引量:1

共引文献25

同被引文献23

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部