期刊文献+

满足用户兴趣漂移的计算自适应快速推荐算法 被引量:3

Compute adaptive fast recommendation algorithm satisfied user interests drift
下载PDF
导出
摘要 针对推荐算法未考虑大数据量计算导致系统性能差及基于历史评分的相似性不能反映用户兴趣动态变化的问题,提出了满足用户兴趣漂移的计算自适应快速推荐算法。该算法依据CPU等计算资源使用率动态调整待推荐用户窗口,并按项目类别及其访问热度动态分配计算时间,计算自适应项目与目标用户的优先级和相似性计算难易度,提高计算效率与响应速度;建立访问次数随时间变化的兴趣度量函数自适应用户兴趣漂移,提高推荐质量。实验结果表明,算法速度更快、推荐更准确、用户体验更好。 Aiming at recommender system' s problems that poor performance was caused by compute without considering the mass data and similarities based on history information couldn' t reflect the change of user interests, this paper proposed a com- pute adaptive fast recommendation algorithm meet user interests drift. The algorithm dynamically adjusted window' s length of the target users according to the computing resources usage rate such as CPU and allocates computation time in accordance with categories and access popularity of items, it achieved that computing automatically adapts the priority, similarity computation difficulty of items and target users,improved the computation efficiency and response speed. Moreover,the thesis created an in- terest measure function by access number changing over time to adapt interest drift, which improved the quality of the recom- mended. The experimental results show that the algorithm has faster speed, more accurate recommender precision and a better user experience.
作者 孙光明 王硕
出处 《计算机应用研究》 CSCD 北大核心 2015年第9期2669-2673,共5页 Application Research of Computers
基金 河北省高等学校科学技术研究重点项目(ZD2014061)
关键词 用户兴趣漂移 计算自适应 推荐算法 user interest drift compute adaptive recommendation algorithm
  • 相关文献

参考文献13

二级参考文献85

  • 1赵鹏,耿焕同,王清毅,蔡庆生.基于聚类和分类的个性化文章自动推荐系统的研究[J].南京大学学报(自然科学版),2006,42(5):512-518. 被引量:13
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 3中国互联网络信息中心.中国互联网络发展状况统计报告[R],2009.1. 被引量:15
  • 4Sarwar B, Karypis G, Konstan J, etal. Item based collaborative filtering recommendation algorithms. Proceedings of the 10^th International Conference on World Wide Web, 2001, 285-295. 被引量:1
  • 5Takacs G, Pilaszy I, Nementh, et al. Scalable collaborative filtering approaches for large rec ommender system. Journal of Machine Learning Research, 2009(10):623-656. 被引量:1
  • 6Linden G, Smith B, York J. Amazon. com recommendations: Item-to item collaborative filtering. IEEE Internet Computing, 2003, 7 (1): 76-80. 被引量:1
  • 7Das A, Datar M, Garg A. Google news personalization: Scalable online collaborative filtering. Proceeding of the WWW 2007/Track: Industrial Practice and Experience. Banff, Alberta, Canada, 2007, 271-280. 被引量:1
  • 8Park S, Pennock D. Applying collaborative filtering techniques to movie search for better ranking and browsing. Proceedings of the 13^th Association for Cmputing Machinery Special Interest Group on Kniwledge Discovery in Data. San Jose, California, USA, 2007, 550-559. 被引量:1
  • 9Bell R, Koren Y. Improved neighborhood based collaborative filtering. KDD-Cup and Workshop at the 13^th Association for Cmputing Machinery Special Interest Group on Kniwledge Discovery in Data International Conference on Knowledge Discovery and Data Mining, 2007, 7-14. 被引量:1
  • 10Deshpande M, Karypis G. Item-based top N recommendation algorithms. Association for Cmputing Machinery Transactions on Information Systems(TOIS), 2004,22(1) :143-177. 被引量:1

共引文献892

同被引文献24

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部