期刊文献+

基于多维度特征权值动态更新的用户推荐模型研究 被引量:1

Research on user recommendation model based on multi-dimensional feature weight dynamic update
下载PDF
导出
摘要 为了提高电影个性化推荐的准确性,将电影通过导演、演员、上映时间、类型和地区等五个部分作为特征维度来表征,特征维度权值采用CHI方法计算,特征维度的权值进行归一化后,电影之间的相似度可以通过特征维度间的相似度体现,用户推荐模型通过不断迭代更新对各维度特征权值进行修正,提高模型推荐的准确性。实验结果表明,改进的算法在MovieLens数据集能够获得较高的准确率和召回率,能够比较准确地捕获用户的兴趣,并在一定程度上解决了用户兴趣漂移的问题。 In order to improve the accuracy of the movie personalized recommendation,the movie is charactered with thefeature dimensions of director,performer,showtime,type and area. The weights of feature dimensions are calculated with CHImethod,and then normalized to reflect the similarity among movies by means of the similarity among the feature dimensions.The user recommendation model can correct the feature weigh of each dimension with the continuous iteration update to improvethe accuracy of model recommendation. The experimental results show that the improved algorithm can obtain high accuracy rateand recall rate with MovieLens dataset,capture the user′s interest exactly,and solve the user interest drifting to a certain extent.
作者 吴承毅 WU Chengyi(Southwest University of Science and Technology,Mianyang 621010,China;Shangluo Vocational & Technical College,Shangluo 726000,China)
出处 《现代电子技术》 北大核心 2016年第15期127-129,共3页 Modern Electronics Technique
关键词 多维度 电影推荐 权值动态更新 个性化推荐模型 multi.dimension movie recommendation weight dynamic update personalized recommendation model
  • 相关文献

参考文献15

二级参考文献109

  • 1张光卫,康建初,李鹤松,刘常昱,李德毅.面向场景的协同过滤推荐算法[J].系统仿真学报,2006,18(z2):595-601. 被引量:27
  • 2杨艳,李建中,高宏.数字图书馆系统中基于Ontology的用户偏好模型[J].软件学报,2005,16(12):2080-2088. 被引量:5
  • 3刘晓光,金烨.网络服务自动化中基于非功能性条件约束的服务选择研究[J].计算机集成制造系统,2006,12(2):297-301. 被引量:7
  • 4Perugini S, Goncalves M A, Fox E A. Recommender systems research: a connection-centric survey[J]. Iournal of Intelligent Information Systems, 2004,23(2) : 107-143. 被引量:1
  • 5Liu Iun. Introduction of analysis in social network[ M]. Beijing: Beijing Social Science Press ,2004. 被引量:1
  • 6Goldberg D, Nichols D, Old B M, et al. Using collaborative filtering to weave an information tapestry [J] . Communications of the ACM, 1992,35(12) :61-70. 被引量:1
  • 7Golbeck I. Generating predictive movie recommendation from trust in social networks [ C ]. Proceedings of the Fourth International Conference on Trust Management, 2006:93-104. 被引量:1
  • 8Golbeck I A. Computing and applying trust in web-based social networks[D]. College Park,MD, USA, 2005. 被引量:1
  • 9Dell' Amico M, Capra L. SOFIA: social filtering for robust recommendations[ C]. Proceedings of International Federation for Inforrnation Processing (IFIP) , 2008: 135 -150. 被引量:1
  • 10Lathia N, Hailes S, Capra L. Trust -based collaborative filtering [ C]. Proceedings of International Federation for Information Processing (IFIP) , 2008: 119 -134. 被引量:1

共引文献43

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部