期刊文献+

基于主题的微博二级好友推荐模型研究 被引量:25

Two-level MicroBlog Friend Recommendation Based on Topic Model
原文传递
导出
摘要 随着社交网站用户爆炸性增长,寻找与自己兴趣相投的潜在朋友越来越困难。为了有效解决以上问题,基于社会关系理论中的同质性理论和三元闭包关系理论,分别从社会关系和内容两个维度向社交网络用户推荐志同道合的朋友。并利用LDA的扩展模型UserLDA对新浪微博用户进行兴趣主题建模,通过用户-主题概率分布矩阵计算用户相似度,以进行TopN二级好友推荐。在真实微博语料库上进行试验表明该推荐算法有较好的准确性和多样性。 With users' explosive growth in the social network, it is more and more difficult for them to find potential friends of similar interests. In order to effectively solve the above problem, this paper proposes to recommend like - minded friends for social network users respectively from two dimensions of social relations and contents based on the theories of Homogeneity and Triadic closure. The paper models interested topics for Sina MicroBlog users by using extended LDA model-UserLDA, and calculates the users' similarity through user-topic probability distribution matrix, to recommend TopN two-level friend. Through the experiments on real weibo corpus, the result shows that the recommendation algorithm has better accuracy and diversity.
出处 《图书情报工作》 CSSCI 北大核心 2014年第9期105-113,共9页 Library and Information Service
基金 国家自然科学基金项目"社会化媒体集成检索与语义分析方法研究"(项目编号:71273194)研究成果之一
关键词 UserLDA 二级好友 TF—IDF JS距离 新浪微博 UserLDA two-level friends TF- IDF JS distance Sina MicroBlog
  • 相关文献

参考文献24

  • 1赵岩露,王晶,沈奇威.基于特征分析的微博用户兴趣发现算法[J].电信工程技术与标准化,2012,25(11):79-83. 被引量:8
  • 2张中峰,李秋丹.社交网站中潜在好友推荐模型研究[J].情报学报,2011,30(12):1319-1325. 被引量:24
  • 3Yang Shuanghong, Long Bo, Smola A,et al. Like like alike: Joint friendship and interest propagation in social networks[C]//Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011. 被引量:1
  • 4Naruchitparames J, Gunes M H, Louis S J. Friend recommendations in social networks using genetic algorithms and network topology[C]//Evolutionary Computation (CEC), 2011 IEEE Congress on. New Orleans: IEEE,2011. 被引量:1
  • 5Chechev M, Georgiev P. A multi-view content-based user recommendation scheme for following users in Twitter[C]//4th International Conference, SocInfo 2012. Berlin: Springer Berlin Heidelberg, 2012. 被引量:1
  • 6Weng Jianshu, Lim E P, Jiang Jing, et al. Twitterrank: Finding topic-Sensitive influential Twitterers[C]//Proceedings of the third ACM international conference on Web search and data mining. New York: ACM,2010. 被引量:1
  • 7Chen Jilin, Nairn R, Nelson L, et al. Short and tweet: Experiments on recommending content from information streams[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2010. 被引量:1
  • 8Rosen-Zvi M, Griffiths T, Steyvers M, et al. The author-topic model for authors and documents[C]//Proceedings of the 20th conference on Uncertainty in artificial intelligence. Virginia: AUAI Press Arlington,2004. 被引量:1
  • 9Hannon J, McCarthy K, Smyth B. Content vs. tags for friend recommendation[M]//Research and Development in Intelligent Systems XXIX. Springer London, 2012: 289-302. 被引量:1
  • 10Hannon J, Bennett M, Smyth B. Recommending twitter users to follow using content and collaborative filtering approaches[C]//Proceedings of the fourth ACM conference on Recommender systems. New York: ACM,2011. 被引量:1

二级参考文献98

  • 1周继恩,刘贵全,张春阳,蔡庆生.基于内部信念状态POMDP模型在用户兴趣获取中的应用[J].小型微型计算机系统,2004,25(11):1979-1983. 被引量:5
  • 2吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 3Fung B C M,Wang K,Ester M.Hierarchical document clustering//Wang John ed.The Encyclopedia of Data Warehousing and Mining,idea Group.2005:970-975. 被引量:1
  • 4Salton G.The SMART Retrieval System-Experiments in Automatic Document Processing.Englewood Cliffs,New Jersey:Prentice Hall Inc,1971. 被引量:1
  • 5Wang Y,Julia H.Document clustering with semantic analysis//Proceedings of the 39th Hawaii International Conferences on System Sciences.Hawaii,US,2006:54-63. 被引量:1
  • 6Hotho A,Staab S,Stumme G.Wordnet improves text document clustering//Proceedings of the Semantic Web Workshop at SIGIR-2003,26th Annual International ACM SIGIR Conference.Toronto,Canada,2003:541-550. 被引量:1
  • 7Hall P,Dowling G.Approximate string matching.Computing Survey,1980,12(4):381-402. 被引量:1
  • 8Coelho T,Calado P,Souza L,Ribeiro-Neto B,Muntz R.Image retrieval using multiple evidence ranking.IEEETransactions on Knowledge and Data Engineering,2004,16(4):408-417. 被引量:1
  • 9Ko Y,Park J,Seo J.Improving text categorization using the importance of sentences.lnformation Processing and Management,2004,40(1):65-79. 被引量:1
  • 10Erkan G,Radev D.Lexrank:Graph-based lexical centrality as salience in text summarization.Journal of Artificial Intelligence Research,2004,22(7):457-479. 被引量:1

共引文献590

同被引文献365

引证文献25

二级引证文献182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部