期刊文献+

基于用户概要扩展的协同过滤算法 被引量:1

Collaborative filtering algorithm based on expanding user profile
下载PDF
导出
摘要 针对协同过滤算法中的新用户冷启动问题,提出了基于用户概要扩展的协同过滤算法(EUPCF)。算法采用一种新的加权朴素贝叶斯方法对新用户的概要进行局部扩展,然后使用扩展后的概要为新用户进行预测推荐,为预测项目提供更多近邻项目。新的加权朴素贝叶斯方法为每个条件属性独立计算后验概率,避免了传统方法中联合分布先验概率对数据稀疏度的敏感性问题,提高了扩展的准确度。Movie Lens数据集实验表明,新算法拥有良好的预测准确度,同时,不会对推荐的实时性产生较大影响。 In order to alleviate cold-start problem the new user faced by collaborative filtering algorithm,this paper proposed a new collaborative filtering algorithm based on expanding user profile( EUPCF). The new algorithm firstly used a new weight naive Bayesian method to get local expanding of the new user's profile,and then used the expanded profile to predict and recommend for the new user,which could provide more accurate neighbor items for the to-be-predicted items. The new weighted naive Bayesian method in EUPCF did not use joint distribution and calculated posteriori probability for each condition attribute independently,which avoided the sensitive problem of sparse data faced by joint distribution. The comparative experiments on Movie Lens dataset show that the proposed EUPCF algorithm has better performance on the prediction accuracy and has slight hindering effect on real-time recommendation.
出处 《计算机应用研究》 CSCD 北大核心 2017年第5期1379-1383,共5页 Application Research of Computers
基金 河南省高等学校重点科研项目(15A880011 15A880010) 河南师范大学博士启动课题(qd14191)
关键词 个性化推荐 协同过滤 冷启动 新用户 朴素贝叶斯 personalized recommendation collaborative filtering cold-start new user naive Bayesian
  • 相关文献

参考文献3

二级参考文献41

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:102
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 3张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:192
  • 4苏萌,柏林森,周涛.个性化:商业的未来[M].北京:机械工业出版社,2012. 被引量:6
  • 5Resnick P,Iacovou N,Suchak M,et al. GroupLens:Anopen architecture for collaborative filtering of netnews [C] //Proc of the 1994 ACM Conf on Computer SupportedCooperative Work. New York:ACM,1994:175-186. 被引量:1
  • 6Hill W,Stead L,Rosenstein M,et al. Recommending andevaluating choices in a virtual community of use [C] //Proc ofthe SIGCHI Conf on Human Factors in Computing Systems.New York:ACM,1995:194-201. 被引量:1
  • 7Sarwar B,Karypis G,Konstan J,et al. Item-basedcollaborative filtering recommendation algorithms [C] //Procof the 10th Int Conf on World Wide Web. New York:ACM,2001; 285-295. 被引量:1
  • 8Shi Y,Larson M,Hanjalic A. Exploiting user similaritybased on rated-item pools for improved user-basedcollaborative filtering [C] //Proc of the 3rd ACM Conf onRecommender Systems. New York:ACM,2009:125-132. 被引量:1
  • 9Kamishima T,Akaho S. Nantonac collaborative filtering:amodel-based approach [C] //Proc of the 4th ACM Odii? onRecommender Systems. New York:ACM,2010:273-276. 被引量:1
  • 10Zhou Ke,Yang Shuanghong,Zha Hongyuan. Functionalmatrix factorizations for cold-start recommendation [C] //Proc of the 34th Int ACM SIGIR Conf on Research andDevelopment in Information Retrieval. New York:ACM,2011:315-324. 被引量:1

共引文献65

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部