期刊文献+

纳米零价铁在包气带中强化迁移 被引量:2

Enhanced delivery of nanoscale zero-valent iron in vadose zone
下载PDF
导出
摘要 为克服纳米级零价铁(nanoscale zero-valent iron,NZVI)在地下环境中易团聚及基于水溶液迁移的重力流和优先流等不足,利用批次和模拟柱实验探讨NZVI在水、十二烷基硫酸钠(SDS)溶液以及泡沫3种媒介输送作用下在包气带中的迁移特性,并研究SDS质量分数对包气带中NZVI迁移的影响。研究结果表明:当SDS质量分数一定时,泡沫质量随着搅拌转速增大而增加;搅拌速度越大,泡沫中NZVI的质量浓度越大,但随着泡沫质量的增加和离心作用增强,NZVI在泡沫的分布越不均匀;理论值为2.8 g/L的纳米零价铁对泡沫的稳定性影响不大。SDS溶液作为输送媒介时,SDS质量分数对纳米铁在介质中迁移促进作用能力强弱依次为0.25%,0.20%,0.50%,1.00%。当SDS泡沫作为输送媒介,SDS质量分数为0.25%时,NZVI在介质中的迁移性最强,其次是SDS质量分数为0.20%与0.50%,1.00%的迁移性最弱。 Laboratory experiments including batch and column studies were conducted to overcome the aggregation of nanoscale zero valent iron (NZVI) and the intrinsic problems, such as preferential flow and gravity flow. The feasibility using water, surfactant foam and solution to deliver NZVI in unsaturated porous media was investigated and further study explored the impact of SDS concentrations on the transport of NZVI in porous media. The results show that the foams quality and ability to carry NZVI improve with the increase of the stirring speed of agitator. However, the distribution of NZVI in foams gradually becomes non-uniform with the increase of NZVI mass concentration. The presence of NZVI does not reduce foam stability. The total exiting rate of NZVI content is in the following order (from big to small): 0.25%, 0.20%, 0.50%, 1.00% and the transport ability of NZVI in porous media at different SDS concentrations also follows the order above. However, the abilities of acceleration of NZVI transport by SDS foams are significantly different under various SDS concentrations. SDS concentration 0.25% is the best vaIue, followed by 0.20% and 0.50% and 1.00% is the worst value to accelerate NZVI transport in porous media.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第4期1569-1576,共8页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(41302183) 国家博士后科学基金资助项目(2013M530987) 吉林大学研究生创新基金资助项目(2014097)~~
关键词 强化 纳米零价铁 迁移 包气带 enhancement nanoscale zero-valent iron delivery vadose zone
  • 相关文献

参考文献16

  • 1Berge N D,Ramsburg C A.Oil-in-water emulsions for encapsulated delivery of reactive iron particIes[J].Environment Science and Technology,2009,43(13):5060-5066. 被引量:1
  • 2Comba S,Sethi R.Stabilization of highly concentrated suspensions of iron nano particles using shear-thinning gels of xanthan gum[J].Water Research,2009,43(15):3717-3726. 被引量:1
  • 3He F.Preparation,characterization and applications of polysaccharide stabilized metal nano particles for remediation of chlorinated solvents in soils and groundwater[D].Auburn: Auburn University.Department of Environmental Engineering,2007:1-238. 被引量:1
  • 4Phenrat T,Kim H J,Fagerlund F,et al.Particle size distribution, concentration,and magnetic attraction affect transport of polymer-modified Fe0 nano particles in sand columns[J]. Environment Science and Technology,2009,43(13):5079-5085. 被引量:1
  • 5Quinn J,Geiger C,Clausen C,et al.Field demonstration of DNAPL Dehalogenation using emulsied zero-valent iron[J]. Environment Science and Technology,2005,39(5):1309-1318. 被引量:1
  • 6Saleh N,Phenrat T,Sirk K,et al.Adsorbed triblock copolymers deliver reactive iron nano particles to the oil/water interface[J]. Nano Letters,2005,5(12):2489-2494. 被引量:1
  • 7Shen X,Zhao L,Zhong L R,et al.Foam,a promising vehicle to deliver nanoparticles for vadose zone remediation[J].Journal of Hazardous Materials,2011,186(2/3):1773-1780. 被引量:1
  • 8Saleh Nj Sirk K,Liu Y,et al.Surface modications enhance nanoiron transport and NAPL targeting in saturated porous media[J].Environment Engineering Science,2007,24(1):45-57. 被引量:1
  • 9Phenrat T.Stabilization of aqueous nanoscale zero valent iron dispersions by anionic polyelectrolytes:adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation[J].Journal of Nanoparticle Research,2008,10(5):795-814. 被引量:1
  • 10Kanel S R,Chio H.Transport characteristics of surface-modified nanoscale zero-valent iron in porous media[J].Water Science and Technology,2007,55(1/2):157-162. 被引量:1

同被引文献19

  • 1余晓倩,何炜,孙长虹,司亚安,刁徐笑,宋光武.鼠李糖脂促进地下水苯和氯苯污染的空气喷射修复[J].环境工程学报,2015,9(5):2220-2226. 被引量:5
  • 2吴虹,汪薇,韩双艳.鼠李糖脂生物表面活性剂的研究进展[J].微生物学通报,2007,34(1):148-152. 被引量:39
  • 3刘志峰,赵刚,刘正锋,张有为,王晓宏.逾渗多孔介质对固体颗粒吸附过程的影响[J].化工学报,2007,58(6):1478-1482. 被引量:2
  • 4Abbasia M, Barib M R, Aramidehc S, et al. 2014. Assessment of the effect of biosurfactant produced by Pseudomonas aeruginosa in lethality of Bacillus thuringiensis Berl. against 3rd instars larvae of white cabbage butterfly (Pieris brassicae L. ) [ J ]. Archives of Phytopathology and Plant Protecton, 47:2106-2111. 被引量:1
  • 5Buss S, Morgan P, Rivett M, et al. 2008. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes [ J ]. Water Research, 42(16) : 4215-4232. 被引量:1
  • 6Jiang D L, Wang R, Hu X L, et al. 2014. Oxidation of nanoscale zero- valent iron under sufficient and limited dissolved oxygen : Influences on aggregation behaviors[ J ]. Chemosphere, 122 : 8-13. 被引量:1
  • 7Dickinson M, Crane A, Scott T. 2015. Nanoscale zero-valent iron particles for the remediation of plutonium and uranium contaminated solutions [ J]. Chemical Engineering Journal, 262:319-325. 被引量:1
  • 8Jiemvarangkul P, Lien H, Zhang W. 2011. Enhanced transport of polyeleetrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media [ J ]. Chemical Engineering Journal, 170 ( 2/3 ) : 482-491. 被引量:1
  • 9Kakavandi B, Farzadkia M, Kalantary R R, et al. 2014. Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles [ J ]. Journal of Environmental Health Science & Engineering, 12 : 115-125. 被引量:1
  • 10Mineev V G, Vodyanitskii Y N. 2015. Degradation of nitrates with the participation of Fe(11) and Fe(0) in groundwater: A review[J]. Eurasian Soil Science, 48(2) : 139-147. 被引量:1

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部