摘要
通过现场取样获得试验所需土壤,利用超声—离心法提取土壤中的微纳米颗粒并对其表征,通过室内砂柱试验,研究不同注入速度(6、10、14 mL/min)和不同注入浓度(0.5、0.8、1.0 g/L)对土壤微纳米颗粒在饱和多孔介质中迁移的影响,运用COMSOL Multiphysics多物理场仿真软件模拟土壤微纳米颗粒在饱和多孔介质中的迁移情况,并对比分析了试验结果与模拟结果。结果表明,超声-离心法可以有效地提取出100 nm左右的土壤微纳米颗粒;注入速度越大和注入浓度越小的土壤微纳米颗粒在饱和多孔介质中的迁移能力越强,且出口处的最大相对出流浓度最高达到0.96;注入速度比注入浓度对土壤微纳米颗粒在饱和多孔介质中迁移能力的影响更加显著;数值模拟中采用的模型模块和基本参数合理,且COMSOL Multiphysics模拟软件可以很好地模拟微颗粒的运移规律。
The soil needed for the experiment was obtained by field sampling, and the micro-nano particles in the soil were extracted and characterized by ultrasonic-centrifugal method. The effects of different injection rates(6, 10, 14 mL/min) and different injection concentrations(0.5, 0.8, 1.0 g/L) on the migration of soil micro-nano particles in saturated porous media were studied by laboratory sand column tests. The migration of soil micro-nano particles in saturated porous media was simulated by COMSOL Multiphysics simulation software, and the experimental and simulation results were analyzed. The results show that the ultrasonic-centrifugal method can effectively extract soil micro-nano particles at about 100 nm. The higher the injection rate and the lower the injection concentration, the stronger the migration ability of soil micro-nano particles in saturated porous media, and the maximum relative outflow concentration at the outlet reached 0.96. The effect of injection rate on the migration ability of soil micro-nano particles in saturated porous media is more significant than that of injection concentration. The model modules and basic parameters used in the numerical simulation are reasonable, and the COMSOL Multiphysics simulation software can well simulate the migration law of micro particles.
作者
章蓬勃
张永祥
荆琳
ZHANG Peng-bo;ZHANG Yong-xiang;JING Lin(Faculty of Architecture,Civil and Transportation Engineering,Beijing University of Technology,Beijing 100124,China)
出处
《水电能源科学》
北大核心
2022年第2期157-160,200,共5页
Water Resources and Power
基金
国家重点研发计划(2016YFC0401404)
企事业委托项目(40004016202001)。
关键词
土壤
微纳米颗粒
提取表征
迁移
数值模拟
soil
micro-nanoparticles
extraction characterization
migration
numerical simulation