摘要
在粗糙集理论研究中,覆盖方法的应用越来越受重视,其中最重要的概念是最近引进的拓扑空间的子集关于子基的内部和闭包以及由它们导入的关于子基的开集、闭集.对由它们导入的拓扑空间关于子基的隔离子集、连通性作进一步研究,所得性质是一般拓扑空间中隔离子集和连通性相应结果的推广.
Covering methods are widely used in rough set theory. The interior and the closure of a subset relative to a subbase for the topology are introduced to study the relationships between the rough sets and the topological space. This paper makes a further research on the separated subset and the connectedness relative to a subbase, and obtains some properties which generalize separated subset and the connectedness in a general topology.
出处
《纯粹数学与应用数学》
2015年第3期231-237,共7页
Pure and Applied Mathematics
关键词
子基
关于子基的开集
关于子基的闭集
关于子基的隔离子集
关于子基的连通性
subbase, the open set relative to a subbase, the close set relative to a subbase,the separated subset relative to a subbase, the connectedness relative to a subbase