期刊文献+

基于Gamma过程和EM-PF参数估计的剩余寿命预测方法研究 被引量:3

Residual Useful Life Prediction Research based on Gamma Process and EM-PF Parameter Estimation Algorithm
下载PDF
导出
摘要 针对一类剩余寿命预测问题,提出基于Gamma过程的状态空间退化模型用于描述装备的性能退化过程,对装备的剩余寿命进行预测.为了解决模型求解过程中,状态空间模型隐状态通常难于测量、收集的数据不完整,并且监测值不确定的实际问题,提出了经验最大化算法和粒子滤波算法结合的方法对模型参数进行求解.在案例研究中,建立了直升机主减速器行星架裂纹和振动信号特征之间的状态空间模型,进行剩余寿命预测,结果表明基于Gamma过程的状态空间退化模型能够较为合理的预测其剩余寿命. In this paper, for residual useful life prediction, the state space model based Gamma Process is proposed to describe the degradation of equipment performance. In the process of model,it often encountered the following problems. 1)the hidden status of equipment is difficult to measure;2)the collected data is usually incomplete; 3)the monitoring values is uncertain. To solve the above problems, we propose the method combined Experience maximization algorithm and particle filter algorithm to get the model parameters.In the case studies, the model of state space between the crack of planetary gear carrier plate of helicopter and the vibration signal features is established to predict RUL.Finally, the result shows that the state space degradation model base on Gamma Process can have more reasonable prediction in URL.
作者 王卫国 孙磊
出处 《军械工程学院学报》 2015年第2期1-7,共7页 Journal of Ordnance Engineering College
基金 总装备部重点预研基金资助项目(9140A27020308JB34)
关键词 Gamma过程 状态空间模型 EM算法 粒子滤波 剩余寿命 预测 Gamma process state space model EM algorithm particle filter remaining useful life predict
  • 相关文献

参考文献14

  • 1张磊,李行善,于劲松,廖灿星.基于混合系统粒子滤波和二元估计的故障预测算法[J].航空学报,2009,30(7):1277-1283. 被引量:8
  • 2GRALL A, DIEULLE L, BERENGUER C, et al. Continuous- time predictive maintenance scheduling for a deteriorating system[J].IEEE Trans,Reliab,2002(51) . 141-150. 被引量:1
  • 3GRALL A, DIEULLE L, BERENGUER C. A condition- based maintena-nce policy for stochastically deteriorating systems [J].Reliability Engineering and System Safety, 2002(76) : 167-180. 被引量:1
  • 4XIANG Yisha,CASSADY C R.Time to failure behavior under a stochastic deterioration model [J]. IEEE, Reliability and Maintainability Symposium, 2007, 12. 405-409. 被引量:1
  • 5张磊,李行善,于劲松,代京.一种基于高斯混合模型粒子滤波的故障预测算法[J].航空学报,2009,30(2):319-324. 被引量:28
  • 6ZHOU Yifan, MA Lin, MATHEW J. A Non-gaussian continuous state space model for asset degradation// Proceedings 3rd World Congress on Engineering Asset Management and Intelligent Maintenance Systems Conferencel.Beijing : 2008 : 1981-1992. 被引量:1
  • 7JORGENSEN B,LUNDBYE C S, SONG Xuekun, et al. A state space model for multivariate longitudinal count data [J].Biometrika, 1999,86(1) : 169-181. 被引量:1
  • 8JIANG Mingxiao,ZHANG Yongcang.Dynamic modeling of degradation data [J]. IEEE Proceedings Annual Reliability and Maintainability Symposium, 2002: 607- 611. 被引量:1
  • 9陈亮,胡昌华.Gamma过程退化模型估计中测量误差影响的仿真研究[J].系统仿真技术,2010,6(1):1-5. 被引量:4
  • 10DEMPSTER A P, LAIRD N M,RUBIN D B.Maximum likelihood from in-complete data via the EM algorithm [J].Journal of the Royal Statistical Society: Series B, 1977,39(1) :1-38. 被引量:1

二级参考文献20

共引文献33

同被引文献26

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部