期刊文献+

基于混合系统粒子滤波和二元估计的故障预测算法 被引量:8

A Fault Prognostic Algorithm Based on Hybrid System Particle Filter and Dual Estimation
原文传递
导出
摘要 针对一类故障预测问题提出了一种基于粒子滤波的故障预测算法。在算法的状态估计阶段,采用混合系统粒子滤波和二元估计算法同时估计对象系统故障演化模型混合状态和未知参数的后验分布。在算法的状态预测阶段,在一定的假设条件的前提下,将混合模型连续状态变量的预测问题转化为一个基本状态空间模型的状态预测问题。通过对连续状态变量当前时刻的后验分布进行迭代采样从而获得其未来时刻的先验分布。在算法的决策阶段,在获取的故障演化模型连续状态变量分布基础上,结合一定的故障判据近似计算出对象系统剩余寿命分布。故障预测仿真实验结果证明了算法的有效性。 To solve certain kinds of fault prognostic problems, an algorithm based on particle filter is presented. At the state estimation stage, the algorithm estimates the posterior distribution of the states and parameters of the system fault progression model based on hybrid system particle filter and dual estimation. At the state prediction stage, the algorithm converts the problem of predicting the continuous states of a hybrid sys- tem model to the problem of predicting the states of a basic state space model under certain predefined assump- tions. By sampling iteratively the posterior distribution of current continuous states, the algorithm can use the sampled particles to form the state prior distribution for some future time. At the prognostic decision stage, based upon the above calculated continuous state distribution, combined with certain fault criteria, the distribution of system remaining useful lifetime can then be inferred. Simulation result demonstrates the validity and feasibility of the proposed algorithm.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第7期1277-1283,共7页 Acta Aeronautica et Astronautica Sinica
基金 总装“十一五”预研
关键词 故障预测 随机系统 混合系统粒子滤波 二元估计 重要性采样重采样 剩余寿命分布 fault prognostics stochastic systems hybrid system particle filter dual estimation sampling importance resampling distribution of remaining useful lifetime
  • 相关文献

参考文献3

二级参考文献12

  • 1吴庚申,梁平,龙新峰.基于ARMA的汽轮机转子振动故障序列的预测[J].华南理工大学学报(自然科学版),2005,33(7):67-73. 被引量:22
  • 2周志杰,胡昌华,韩晓霞.一种混合建模方法在陀螺漂移预测中的应用研究[J].系统工程与电子技术,2007,29(3):416-418. 被引量:2
  • 3王雷,徐治皋,司风琪.基于支持向量回归的凝汽器清洁系数时间序列预测[J].中国电机工程学报,2007,27(14):62-66. 被引量:22
  • 4Ofsthun S. Integrated vehicle health management for aerospace platform[J]. IEEE Instrumentation & Measurement Magazine, 2002,5(3):21-24. 被引量:1
  • 5Ray A, Tangirala S. Stochastic modeling of fatigue crack dynamics for on line failure prognostics[J]. IEEE Transactions on Control Systems Technology, 1996,4(4):443-451. 被引量:1
  • 6Swanson D C. A general prognostic tracking algorithm for predictive maintenance[C]// 2001 IEEE Aerospace Conference Proceedings. 2001: 2971-2977. 被引量:1
  • 7Chelidze D. Multimode damage tracking and failure prog nosis in eleetromechanical system[C]// Components and Systems Diagnostics. Prognostics, and Health Management Ⅱ, Proceedings of SPIE. Orlando: SPIE, 2002, 1-12. 被引量:1
  • 8Boers Y, Driessen J N. Interacting multiple model particle filter[J]. Radar, Sonar and Navigation, 2003. 150 (5): 344-349. 被引量:1
  • 9Doucet A, Godsill S J, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000,10(3):197-208. 被引量:1
  • 10Orchard M, Wu B, Vachtsevanos G. A particle filter framework for failure prognosis [C]// Proceedings of WTC2005, World Tribology Congress Ⅲ. Washington D.C., USA: ASME, 2005: 1-2. 被引量:1

共引文献48

同被引文献96

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部