期刊文献+

基于状态空间模型的齿轮磨损预测研究 被引量:5

Research on Prediction of Gear Wear Based on State Space Model
下载PDF
导出
摘要 齿轮磨损过程是一系列理化效应的结果,能够直接表征齿轮磨损的直接状态信息磨损量往往是不可测量或难于测量的;另一方面,状态监测系统得到大量反映齿轮健康状态的间接状态信息。针对有限的直接状态信息和大量的间接状态信息问题,结合齿轮箱全寿命实验结果,将振动信号特定频带能量作为间接状态信息,建立了Gamma-状态空间模型,提出了经验最大化算法和粒子滤波相结合的参数求解方法。利用该模型对齿轮箱齿轮磨损情况进行了全面分析,并进行了磨损预测研究,通过与实验结果对比分析,验证了模型的有效性。 The process of gear wear is the result of physical and chemical effect. Amount of indirect condition information is obtained by condition monitoring system. Wear is the dominant reason of the change of indirect condition information. Combined with the gearbox full lifetime experiments, which obtain limited direct condition information and plentiful indirect condition information, the Gamma-State space model is established. Experience maximization arithmetic and particle filtering are used to solve model parameters. Then the model is used to analyze the gear wear and predict the development of wear. Compared with the experimental results, the efficiency of the model is validated.
机构地区 军械工程学院 [
出处 《机械科学与技术》 CSCD 北大核心 2011年第12期2086-2091,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 总装重点预研基金项目(9140A27020308JB34)资助
关键词 状态空间模型 Gamma过程 经验最大化算法 粒子滤波 state space model gamma process experience maximization particle filtering
  • 相关文献

参考文献10

  • 1Jiang M X, Yong C Z. Dynamic modeling of degradation data [ A ]. IEEE Proceedings Annual Reliability and Maintainability Symposium [ C ], 2002. 被引量:1
  • 2Orchard M E. A Particle Filtering-based Framework for Online Fault Diagnosis and Failure Prognosis [ D ]. Georgia: Georgia Institute of Technology,2006. 被引量:1
  • 3Mareos E, et al. A novel RSPF approach to prediction to prediction of high-risk, low-probability failure event [ A ]. Annual Conference of the Prognostics and Health Management Society[C] ,2009. 被引量:1
  • 4Chelidze D, et al. A dynamical systems approach to damage evolution tracking part 1 : description and experimental application [ J ]. Journal of Vibration and Acoustics, 2002, 124 : 250 - 257. 被引量:1
  • 5David Chelidze, Joseph P, Cusumano. A dynamical systems approach to failure prognosis, http://www, mce. uri. edu/chelidze. 被引量:1
  • 6David Chelidze, Liu M. Dynamical systems approach to fatigue samage identification, http ://www. mce. uri. edu/chelidze. 被引量:1
  • 7Dewar M, Kadirkamanathan V. A canonical space-time state space model: state and parameter estimation[ J]. IEEE Transactions on Signal Processing, 2007,55 (10) :4862 - 4869. 被引量:1
  • 8贾希胜著..以可靠性为中心的维修决策模型[M],2007:221页.
  • 9王爱平,张功营,刘方.EM算法研究与应用[J].计算机技术与发展,2009,19(9):108-110. 被引量:58
  • 10朱志宇著..粒子滤波算法及其应用[M].北京:科学出版社,2010:257.

二级参考文献11

  • 1孙大飞,Dempster A P, Laird N M, et al. Maximum likelihood from Incomplete data via the EM algorithm[J ]. Journal of the Royal Statistical Society, Series B, 1997,39(1) :1-38. 被引量:1
  • 2Meng X L, Rubin D B. Recent Extension to the EM algorithm[M]. Bayesian Statistics 4. Oxford: Oxford University Press, 1992: 307 - 320. 被引量:1
  • 3Andrieu C,Doucet A. Online Expection- Maximization Type Algorithms for Parameter Estimation in General State Space Models[C]//in Proc. IEEE Int. Conf. Aooustics, Speech, and Signal Processing. [s. l. ] : [s. n. ] ,2003:69- 72. 被引量:1
  • 4贾沛璋,朱征桃.最优估计及其应用[M].北京:科学出版社,1994. 被引量:1
  • 5Parzen E. On the estimation of a probability density function andmode [ J ]. Annals of Mathematical Statistics, 1962,33 : 1065 - 1076. 被引量:1
  • 6Wang A P, Wang H. Minimising entropy and mean tracking control for affine nonlinear and non - Gaussian dynamic stochastic system[J]. IEE Proceedings Control Theory & Application, 2005,151 (4) : 405 - 520. 被引量:1
  • 7Wang A P, Wang H, Tan J. Optimal Filtering for Multivariable Stochastic System via Residual Probability Density Function Shaping[ C]//Proceedings of SICE 2005 Annual Corderence. [s. l. ] : [s. n. ] ,2005:215 - 219. 被引量:1
  • 8Guo L, Wang H. Mininum entropy filtering for multivariate stochastic systems with non- Gaussian noises [ J ]. IEEE Transactions on Automatic Control,2006,51(4) :670 -695. 被引量:1
  • 9郭雷,程代展,张纪峰,等.控制理论导论[M].北京:科学出版社,2005. 被引量:13
  • 10梁应敞,张贤达,李衍达,张沛武.非高斯相关噪声中高斯信号的时延估计[J].电子科学学刊,1997,19(5):606-612. 被引量:6

共引文献57

同被引文献28

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部