期刊文献+

基于混合粒子群优化SVM算法的红斑鳞状皮肤病诊断 被引量:7

DIAGNOSING ERYTHEMATO-SQUAMOUS DISEASE BASED ON HYBRID PARTICLE SWARM OPTIMISATION SVM
下载PDF
导出
摘要 红斑鳞状皮肤病的诊断是皮肤病科的一个难题,针对这一问题,提出一种基于混合粒子群的支持向量机(SVM)模型HAPSO-SVM来提高红斑鳞状皮肤病的诊断精度。模型考虑了特征选择机制和参数优化两者对SVM模型起着同等重要的作用,使用自适应的混合粒子群算法(HAPSO)同步实现特征选择机制和SVM的参数寻优,同时设计的线性加权多目标函数综合考虑了分类准确率和支持向量个数,从而提高了算法的准确率和效率。结果表明,提出的模型不仅获得了较少的支持向量个数,找出了红斑鳞状皮肤病紧密相关的特征,并且得到了很高的分类准确率,是一种有效的红斑鳞状皮肤病诊断模型。 The diagnosis of erythemato-squamous disease is a difficult problem in dermatology.In view of this,we propose a hybrid particle swarm optimisation-based support vector machine (SVM)model,namely HAPSO-SVM,for improving the accuracy of erythemato-squamous disease diagnosis.The model takes into account the same important roles on the SVM model played by both the feature selection mechanism and the parameter optimisation,and uses hybrid adaptive particle swarm optimisation (HAPSO)to implement the feature selection mechanism and parameter optimisation simultaneously.Meanwhile,the linear-weighted multi-objective function designed comprehensively considers both the classification accuracy rate and the number of support vectors,therefore improves the accuracy and efficiency of the algorithm.Results show that the proposed algorithm not only achieves small number of support vectors and finds the most related features of erythemato-squamous disease,but also obtains much higher classification accuracy rate,it is proved to be the effective diagnosis model for erythemato-squamous disease.
出处 《计算机应用与软件》 CSCD 2015年第6期192-197,211,共7页 Computer Applications and Software
基金 吉林省长春市教育厅(吉教科验字[2012]第72号)
关键词 混合自适应PSO 红斑鳞状皮肤病诊断 混合模型 支持向量机 Hybrid adaptive PSO Diagnosis of erythemato-squamous disease Hybrid model Support vector machine
  • 相关文献

参考文献27

  • 1Güvenir H,Demiroz G,Ilter N,et al.Learning differential diagnosis of erythemato squamous diseases using voting feature intervals[J].Artificial Intelligence in Medicine,1998,13(3):147-165. 被引量:1
  • 2Güvenir H,Emeksiz N.An expert system for the differential diagnosis of erythemato squamous diseases[J].Expert systems with applications,2000,18(1):43-49. 被引量:1
  • 3West D,West V.Improving diagnostic accuracy using a hierarchical neural network to model decision subtasks[J].International journal of medical informatics,2000,57(1):41-55. 被引量:1
  • 4Ubeyl E D,Güler I.Automatic detection of erythemato squamous diseases using adaptive neuro-fuzzy inference systems[J].Computers in Biology and Medicine,2005,35(5):421-433. 被引量:1
  • 5Nanni L.An ensemble of classifiers for the diagnosis of erythematosquamous diseases[J].Neurocomputing,2006,69(7):842-845. 被引量:1
  • 6Ubeyli E D.Multiclass support vector machines for diagnosis of erythemato squamous diseases[J].Expert systems with applications,2008,35(4):1733-1740. 被引量:1
  • 7Ubeyli E D.Combined neural networks for diagnosis of erythemato squamous diseases[J].Expert systems with applications,2009,36(3):5107-5112. 被引量:1
  • 8Karabatak M,Ince M C.A new feature selection method based on association rules for diagnosis of erythemato-squamous diseases[J].Expert systems with applications,2009,36(10):12500-12505. 被引量:1
  • 9Ubeyli E.D,Dogdu E.Automatic detection of erythemato squamous diseases using k-means clustering[J].Journal of medical systems,2010,34(2):179-184. 被引量:1
  • 10Xie J,Wang C.Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato squamous diseases[J].Expert systems with applications,2011,38(5):5809-5815. 被引量:1

二级参考文献14

  • 1方景龙,陈铄,潘志庚,梁荣华.复杂分类问题支持向量机的简化[J].电子学报,2007,35(5):858-861. 被引量:9
  • 2Vladimir N Vapnik. Statistical learning theory[M]. USA:Wiley-Interscience, 1998: 20-29. 被引量:1
  • 3Huang Kai-zhu, Zheng Da-nian, Sun Jun, et al. Sparselearning for support vector classification[J]. PatternRecognition Letters, 2010, 31(13): 1944-1951. 被引量:1
  • 4Zhang Kai, Kwok J T. Simplifying mixture modelsthrough function approximation[J]. IEEE Trans on NeuralNetworks, 2010, 21(4): 644-658. 被引量:1
  • 5Platt J C. Fast training of support vector machines usingsequential minimal optimization[C]. Advances in KernelMethods―Support Vector Learning.Cambridge: MITPress, 1999: 185-208. 被引量:1
  • 6Suykens J A K, Vandewalle J. Least squares support vectormachine classifiers[J]. Neural Processing Letters, 1999,9(3): 293-300. 被引量:1
  • 7Sch¨olkopf B, Smola A J, Williamson R C, et al. Newsupport vector algorithms[J]. Neural Computation, 2000,12(5): 1207-1245. 被引量:1
  • 8Burges C J C. Simplified support vector decision rules[C].Proc of 13th Int Conf on Machine Learning. San Mateo:Morgan Kaufmann, 1996: 71-77. 被引量:1
  • 9Burges C J C, Sch¨olkopf B. Improving the accuracy andspeed of support vector machines[C]. Advances in NeuralInformation Processing.Systems. Vancouver: MIT Press,1997: 375-381. 被引量:1
  • 10Lawson C L, Hanson R J. Solving least-squaresproblems[M]. Prentice-Hallpage, 1974: 161-163. 被引量:1

共引文献7

同被引文献40

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部