期刊文献+

基于语义分析的互联网人物信息提取 被引量:3

Semantic Analysis-based Extraction of Internet Personage Information
原文传递
导出
摘要 互联网是人类网络空间行为的体现,其中隐藏了大量人物信息。由于这些信息分散在整个网络空间中,将互联网人物信息提取并进行归类具有重要的研究意义和实用价值。文中提出了一种新的互联网人物信息提取模型,实现了人物信息的自动化提取。详细分析了基于网络爬虫的网页信息采集、基于语义分析的人物特征提取、基于向量空间模型的人物聚类算法和人物信息检索等技术原理和实现方案,能够对互联网人物信息进行分析和提取。 The Internet, as a manifestation of human behavior in cyberspace, contains massive personage information. However this information is scattered throughout the Internet, so extraction and classification of the information from the Internet is of important significance and practical value. This paper proposes a new model for automatically extracting the personage information from the Internet. It discusses technologies of web information collection based on web crawl- er, character extraction based on semantic analysis, figures clustering algorithm based on vector space model and retrieval of personage information. It also analyzes their technical principles and implementations. Thus both the extraction of personage information from the Internet and analysis on the extracted information can be done.
出处 《信息安全与通信保密》 2013年第12期103-108,共6页 Information Security and Communications Privacy
关键词 语义 向量空间模型 聚类算法 semantic vector space model clustering algorithm
  • 相关文献

参考文献6

二级参考文献36

  • 1骆正清,陈增武,胡上序.一种改进的MM分词方法的算法设计[J].中文信息学报,1996,10(3):30-36. 被引量:28
  • 2方景龙,陈铄,潘志庚,梁荣华.复杂分类问题支持向量机的简化[J].电子学报,2007,35(5):858-861. 被引量:10
  • 3Vladimir N Vapnik. Statistical learning theory[M]. USA:Wiley-Interscience, 1998: 20-29. 被引量:1
  • 4Huang Kai-zhu, Zheng Da-nian, Sun Jun, et al. Sparselearning for support vector classification[J]. PatternRecognition Letters, 2010, 31(13): 1944-1951. 被引量:1
  • 5Zhang Kai, Kwok J T. Simplifying mixture modelsthrough function approximation[J]. IEEE Trans on NeuralNetworks, 2010, 21(4): 644-658. 被引量:1
  • 6Platt J C. Fast training of support vector machines usingsequential minimal optimization[C]. Advances in KernelMethods―Support Vector Learning.Cambridge: MITPress, 1999: 185-208. 被引量:1
  • 7Suykens J A K, Vandewalle J. Least squares support vectormachine classifiers[J]. Neural Processing Letters, 1999,9(3): 293-300. 被引量:1
  • 8Sch¨olkopf B, Smola A J, Williamson R C, et al. Newsupport vector algorithms[J]. Neural Computation, 2000,12(5): 1207-1245. 被引量:1
  • 9Burges C J C. Simplified support vector decision rules[C].Proc of 13th Int Conf on Machine Learning. San Mateo:Morgan Kaufmann, 1996: 71-77. 被引量:1
  • 10Burges C J C, Sch¨olkopf B. Improving the accuracy andspeed of support vector machines[C]. Advances in NeuralInformation Processing.Systems. Vancouver: MIT Press,1997: 375-381. 被引量:1

共引文献65

同被引文献11

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部