期刊文献+

一种基于解释性的遗传模糊分类系统设计方法 被引量:1

A Method of Designing Genetic Fuzzy Classification System Based on Interpretability
下载PDF
导出
摘要 讨论了基于词语计算的模糊规则生成方法在遗传模糊分类系统中的应用,提出了一种新的遗传模糊分类系统的设计方法,在算法的变异过程中基于词语计算引入4个变异算子,对模糊隶属函数的形状进行调整,扩大算法的搜索空间,实验结果表明算法在保证了系统解释性的同时达到了较好的分类准确率. The application of generating fuzzy rule with word computing in genetic fuzzy classification system is discussed,and a new method to design genetic fuzzy classification system is proposed. The new algorithm imports four operators in the mutation operation to adjust shape of the membership function of fuzzy partition in order to expand the algorithm’ s search space. Experiment shows that the new system has better correct classification rate while retaining its interpretability.
出处 《北华大学学报(自然科学版)》 CAS 2015年第4期538-541,共4页 Journal of Beihua University(Natural Science)
基金 吉林省教育厅科学技术研究项目(2012126) 吉林省科技厅自然科学基金项目(20140101185JC)
关键词 模糊分类系统 模糊规则 词语计算 fuzzy classification system fuzzy rule word computing
  • 相关文献

参考文献11

二级参考文献168

共引文献234

同被引文献8

  • 1邢宗义,侯远龙,贾利民.基于多目标遗传算法的模糊分类系统设计[J].东南大学学报(自然科学版),2006,36(5):725-731. 被引量:7
  • 2张永,邢宗义,向峥嵘,胡维礼.基于聚类和遗传算法的解释性模糊模型设计[J].计算机工程,2007,33(8):160-162. 被引量:4
  • 3Wesley J Cole, Joshua D Rhodes, William Gorman, et al. Community-scale residential air conditioning control for effective grid management[ J ]. Applied Energy, 2014,130 (5) :428-436. 被引量:1
  • 4Upshaw C R, Rhodes J D, Webber M E. Modeling peak load reduction and energy consumption enabled by an integrated thermal energy and water storage system for residential air conditioning systems in Austin[ M ]. Texas:Energy and Build ,2015. 被引量:1
  • 5Wang D, Jia H, Wang C,et al. Performance evaluation of controlling thermostatically controlled appliances as virtual generators using comfort-constrained state-queueing models [ J ]. Let Generation Transmission & Distribution ,2014,8 (4) :591-599. 被引量:1
  • 6Wu T P, Chen S M. A new method for constructing membership functions and fuzzy rules from training examples [ J ]. IEEE Trans System Man Cybemetic Part B, 1999,29 (1) :25-40. 被引量:1
  • 7lshibuehi H, Nakashmia T, Murata T. Three-objective genetics-based machine learning for linguistic rule extraction [ J ]. Information Sciences ,2001,136(1-4) : 109-133. 被引量:1
  • 8Shi Y, Eberhart R, Chen Y. Implementation of evolutionary fuzzy system [ J ]. IEEE Trans Fuzzy Systems, 1999,7 ( 2 ) : 109-119. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部