期刊文献+

一种基于模糊关联分类的遥感图像分类方法 被引量:7

Remote Sensing Image Classification Based on Fuzzy Associative Classification
下载PDF
导出
摘要 遥感图像分类是遥感领域的研究热点之一.提出了一种基于自适应区间划分的模糊关联遥感图像分类方法(fuzzy associative remote sensing classification,FARSC).算法根据遥感图像分类的特点,利用模糊C均值聚类算法自适应地建立连续型属性模糊区间,使用新的剪枝策略对项集进行筛选从而避免生成无用规则,采用一种新的规则重要性度量方法对多模糊分类规则进行融合,从而有效地提高分类效率和精确度.在UCI数据和遥感图像上所作实验结果表明,算法具有较高的分类精度以及对样本数量变化的不敏感性,对于解决遥感图像分类问题,FARSC算法具有较高的实用性,是一种有效的遥感图像分类方法. The classification of remote sensing images is one of the most important issues in the remote sensing field. Due to inherent variability and uncertainty of the data, training data is hard to obtain in most real-world applications, which impact the classification accuracy of traditional classifiers greatly. In this paper, a novel fuzzy associative classifier hased on fuzzy association rules, namely fuzzy associative remote sensing classification (FARSC), is developed for the classification of remote sensing images. The proposed algorithm employs fuzzy C-means to partition quantitative attributes according to their intrinsic characteristics, adopts new jointing and pruning techniques without generating useless candidate itemsets, and introduces a weighted parameter to score the fuzzy association rules, which fuses multiple rules to avoid the bias towards some classes. To evaluate the performance of the proposed algorithm, an experiment on the remote sensing image of Zhalong Nature Reserve is performed, compared with two other image classification algorithms: support vector machine and extreme leaning machine. The experimental results show that the proposed algorithm not only has higher classification accuracy, but also is insensitive to the variation of amount of the training data. Hence FARSC can effectively overcome the problem of the lack of training data set in the actual remote sensing classification and get a high classification accuracy.
作者 董杰 沈国杰
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第7期1500-1506,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61074096) 国家"九七三"重点基础研究发展计划基金项目(2006CB403405)
关键词 数据挖掘 模糊关联分类 遥感 关联规则 图像分类 data mining fuzzy associative classification remote sensing association rule image classification
  • 相关文献

参考文献13

  • 1Nishii R,Eguchi S. Supervised image classification by contextual Ada boost based on posteriors in neighborhoods[J].IEEE Transactions on Geoscience and Remote Sensing,2005,(11):2547-2554.doi:10.1109/TGRS.2005.848693. 被引量:1
  • 2Bruzzone L,Prieto D F. Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images[J].IEEE Trans on Geoseience and Remote Sensing,2001,(02):456-460. 被引量:1
  • 3Tonjcs R,Growe S,Buckner J. Knowledge-based interpretation of remote sensing images using semantic nets[J].Photogram Metric Engineering and Remote Sensing,1999,(07):811-821.doi:10.1021/bi1013744. 被引量:1
  • 4王小敏,曾生根,夏德深.基于松弛因子改进FastICA算法的遥感图像分类方法[J].计算机研究与发展,2006,43(4):708-715. 被引量:7
  • 5赵峰,黄庆明,高文.一种基于奇异值分解的图像匹配算法[J].计算机研究与发展,2010,47(1):23-32. 被引量:26
  • 6Liu B,Hsu W,Ma Y. Integrating classification and association rule mining[A].New York:ACM,1998.80-86. 被引量:1
  • 7Chen G Q,Liu H Y,Yu L. A new approach to classification based on association rule mining[J].Decision Support Systems,2006,(02):674-689. 被引量:1
  • 8Thabtah F A,Cowling P I. A greedy classification algorithm based on association rule[J].Applied Soft Computing Journal,2007,(03):1102-1111.doi:10.1016/j.asoc.2006.10.008. 被引量:1
  • 9Hu Y C,Chen R S,Tzeng G H. Mining fuzzy association rules for classification problems[J].Computers & Industrial Engineering,2002,(04):735-750.doi:10.1016/S0360-8352(02)00136-5. 被引量:1
  • 10Huang G B,Zhu Q Y,Siew C K. Extreme learning machine:Theory and applications[J].Neurocomputing,2006,(1/2/3):489-501.doi:10.1016/j.neucom.2005.12.126. 被引量:1

二级参考文献29

  • 1李强,张钹.一种基于图像灰度的快速匹配算法[J].软件学报,2006,17(2):216-222. 被引量:112
  • 2Brown L G. A survey of image registration techniques [J]. ACM Computing Surveys, 1992, 24(4): 326-376. 被引量:1
  • 3Heipke C. Overview of image matching techniques [C]//Proc of OEEPE Workshop on the Application of Digital Photogrammetric Workstations. Frankfurt: OEEPE Official Publications, 1996:173-189. 被引量:1
  • 4Zitova B, Flusser J. Image registration methods: A survey [J]. Image and Vision Computing, 2003, 21(11): 977-1000. 被引量:1
  • 5Hanaizumi H, Fujimura S. An automated method for registration of satellite remote sensing images [C] //Proc of IGARSS'93. Piscataway, NJ: IEEE, 1993:1348-1350. 被引量:1
  • 6Berthilsson R. Affine correlation [C]//Proc of ICPR'98. Los Alamitos, CA: IEEE Computer Soeiety, 1998:1458-1460. 被引量:1
  • 7Zhang Z, Deriehe R, Faugeras O, et al, A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry [J]. Artificial Intelligence Journal, 1995, 78(1-2): 87-119. 被引量:1
  • 8Pilu M. A direct method for stereo correspondence based on singular value decomposition [C] //Proc of CVPR'97. Los Alamitos, CA: IEEE Computer Society, 1997:261-266. 被引量:1
  • 9Baumberg A. Reliable feature matching across widely separated views [C]//Proc of CVPR'00. Los Alamitos, CA: IEEE Computer Society, 2000: 774-781. 被引量:1
  • 10Schmid C, Mohr R. Local grayvalue invariants for image retrieval [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(5): 530-535. 被引量:1

共引文献31

同被引文献60

  • 1茹立云,马少平,路晶.基于Boosting学习的图片自动语义标注[J].中国图象图形学报,2006,11(4):486-491. 被引量:6
  • 2王惠明,史萍.图像纹理特征的提取方法[J].中国传媒大学学报(自然科学版),2006,13(1):49-52. 被引量:77
  • 3刘燕,邝颖杰.基于混合索引的图像检索系统的设计与实现[J].农业网络信息,2007(6):34-36. 被引量:1
  • 4王丹,吴孟达.粗糙模糊C-均值算法及其在图像聚类中的应用[J].国防科技大学学报,2007,29(2):76-80. 被引量:6
  • 5Van de Sande K, Uijlings J,Snoek C, et al. Hybrid coding for selective search [ C ]//Florence : proceedings of the workshop on PASCAL VOC ,2012 : 1-8. 被引量:1
  • 6Bengio S Weston J, Grangier D. Label embedding trees for large multi-class tasks [ C ]//Vancouver:proceeding of the advances in neural information processing systems(NPIS) ,2010 : 163-171. 被引量:1
  • 7Le Q V, Ranzato M A, Monga R, et al. Building high-level features using large scale unsupervised learning [ C ]//Edinburgh: Proceedings of the International Conference on Machine Learning (ICML) ,2012:107-114. 被引量:1
  • 8L A Zadeh. Fuzzy logic = computing with words [ J ]. IEEE Transactions on Fuzzy Systems, 1996,4 (2) : 103-111. 被引量:1
  • 9Ji-Dong Li, Xue-Jie Zhang, Yun-Shan Chen. Applying expert experience to interpretable fuzzy classification using genetic algorithms[ C ]//Haikou :proceedings of the fourth international conference on fuzzy systems and knowledge discovery, IEEE Computer Society,2007 : 129-133. 被引量:1
  • 10E. Smart,D. Brown,J. Denman.Combining multiple classifiers to quantitatively rank the impact of abnormalities in flight data[J].Applied Soft Computing Journal.2012(8) 被引量:1

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部