期刊文献+

一种新的模糊规则权重方法的非平衡数据分类问题的研究 被引量:5

Research on a new method for fuzzy rule weights in imbalanced data classification problem
原文传递
导出
摘要 针对传统分类算法在处理非平衡数据集所出现的少数类分类准确率较低的问题,通过引入加权系数和样本分布函数给出了一种新的模糊规则权重的计算方法.该方法加强了类间的对比度和差异性,削弱了类内差距.将该权重方法与Chi et al规则生成算法和模糊分类推理模型结合形成新的分类算法,对具有不同非平衡度的UCI数据集进行Matlab对比研究,所得结果验证了该算法的可靠性与有效性. For the problem that the traditional classification methods often tend to the majority class and lead a lower classification accuracy to the minority class in imbalancod data, a new calculation method of fuzzy role weights is proposed. This algorithm not only keeps the pattern matching degree within class in uniform distribution, but also enhances the contrast of inter-class. Then a classification algorithm is designed, which includes the new calculation method of fuzzy rule weights, Chi et al algorithm and fuzzy reasoning model. Finally numerical simulation about the imbalanced data of UCI data sets shows the reliability of the classification algorithm.
作者 陈刚 冯丹
出处 《控制与决策》 EI CSCD 北大核心 2012年第1期104-108,共5页 Control and Decision
基金 国家自然科学基金项目(60875032/F030504)
关键词 非平衡数据 数据分类 模糊规则权重 数据预处理 imbalanced data data classification fuzzy rules weights data processing
  • 相关文献

参考文献1

二级参考文献20

  • 1高亮,高海兵,周驰,喻道远.基于粒子群优化算法的模式分类规则获取[J].华中科技大学学报(自然科学版),2004,32(11):24-26. 被引量:8
  • 2阳爱民,胡运发.一种基于动态聚类的模糊分类规则的生成方法[J].小型微型计算机系统,2005,26(9):1540-1545. 被引量:3
  • 3邢宗义,张永,侯远龙,贾利民.基于模糊聚类和遗传算法的具备解释性和精确性的模糊分类系统设计[J].电子学报,2006,34(1):83-88. 被引量:8
  • 4Chakraborty D, Pal N R. A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Transactions on Neural Networks, 2004, 15(1): 110-123. 被引量:1
  • 5Chen Y X, Wang J Z. Support vector learning for fuzzy rulebased classification systems. IEEE Transactions on Fuzzy Systems, 2003, 11(6): 716-728. 被引量:1
  • 6Castellano G, Fanelli A M. A staged approach for generation and compression of fuzzy classification rules//Proceedings of the 9th IEEE International Conference on Fuzzy Systems. 2000, 1(1): 42-47. 被引量:1
  • 7Roubos Johannes A, Setnes Magne, Abonyi Janos. Learning fuzzy classification rules from label data. Information Sciences, 2003, 150(1-2): 77-93. 被引量:1
  • 8Casillas J, Cordon O, del Jesus M J, Herrera F. Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems. Information Sciences, 2001, 136(1-4): 135-157. 被引量:1
  • 9Ishibuchi H, Nakashima T, Murata T. Performance evalua tion of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 1999, 29 (5) : 601-618. 被引量:1
  • 10Ishibuchi H, Yamamoto T. Rule weight specification in fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 428-435. 被引量:1

共引文献11

同被引文献53

  • 1王俊,叶中行.一种改进的实数型遗传算法在多目标最优投资组合选择中的应用[J].宁夏大学学报(自然科学版),2004,25(3):226-229. 被引量:3
  • 2TAKTAK R,HUSSON R. Vehicle detection at night using image processing and pattern recognition[C]// proc of International Conference on Image Processing, Astin, Texas : IEEE, 1994 : 296-300. 被引量:1
  • 3CUCCHIARA R, PICCARD I. Vehicle detection under day and night illumination[C]//Proc of ISCS-IIA Spe- cial Session on Vehicle Traffic and Surveillance, ISCS- IIA, 1999 : 789-794. 被引量:1
  • 4CUCCHIARA R, PICCARD I, MELLO P. Image a- nalysis and rule-based reasoning for a traffic monito- ring system E J- IEEE Transactions on Inte|ligent Transportation Systems, 2000,1 (2) : 119-130. 被引量:1
  • 5HANZI W, DAVID S. Background subtraction based on a robust consensus method[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alamitos: IEEE Computer Soc, 2006:223-226. 被引量:1
  • 6GAO Dashan, ZHOU Jie, Xin Leping. SVM-based detection of moving vehicles for automatic traffic moni- toring [C]//Proceedings of 2001 IEEE IntelligentTransportation Systems Con{erence, Oakland, USA: CA, 2001(8) :25-29. 被引量:1
  • 7FREUND Y. Boosting a weak algorithm by majority [J]. Information and Computation, 1995, 121 (2) : 256-285. 被引量:1
  • 8FREUND Y, SCHAPIRE R E A decision-theoretic generalization of online learning and an application to boosting[J]. Journal of Computer and System Sci- ences, 1997,55(1) :119-139. 被引量:1
  • 9SCHAPIRE R E. The boosting approach to machine learning: an overview [J]. Nonlinear Estimation and Classification Springer, 2002 .. 1-23. 被引量:1
  • 10LOWE D, Distinctive image features from scale invari- ant key points [J]. International Journal of Computer Vision,2004,60(2) :91-110. 被引量:1

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部