期刊文献+

基于简化虚拟受力模型的未知复杂环境下群机器人围捕 被引量:4

Hunting in Unknown Complex Environments by Swarm Robots Based on Simplified Virtual-Force Model
下载PDF
导出
摘要 针对未知非凸和凸以及动态障碍物环境下群机器人围捕,提出了一种基于简化虚拟受力模型的循障和围捕方法.首先给出了目标和动态障碍物的运动模型.然后通过对复杂环境下围捕行为的分解,抽象出简化虚拟受力模型.基于此模型,设计了个体循障和围捕方法,接着证明了系统的稳定性并给出了参数设置范围.仿真结果表明,本文围捕方法可以使群机器人在未知复杂环境下保持较好的围捕队形,并具有良好的避障性能和灵活性,同时分析了与基于松散偏好规则的围捕方法相比的优势. In this paper,a method based on a simplified virtual-force model is proposed for swarm robots hunting in unknown non-convex, convex and dynamic obstacles environments. First, the motion models for the hunting target and dynamic obstacles are presented. Then through the decomposition of hunting behaviors under complicated environments, a simplified virtual-force model is fomaed. Based on the model,the control method is designed for swarm robots following motions of barriers and the hunting target; the stability of the hunting system is analyzed and the control parameter ranges are given. Simulation results demonstrate that the proposed method can maintain a good hunting formation and has good performance of obstacles avoidance and flexibility. Finally, advantages of this method are presented,compared with the hunting method based on loose preference rule.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第4期665-674,共10页 Acta Electronica Sinica
基金 国家自然科学基金(No.61174140 No.51374107 No.61203016 No.61174050) 国家自然科学青年基金(No.61203309) 湖南省自然科学基金(No.13JJ8014) 湖南省教育厅优秀青年项目(No.12B043) 博士点基金(No.20110161110035) 国家科技支撑计划(No.2012BAH09B02)
关键词 移动机器人 群机器人 非凸障碍物 简化虚拟受力模型 避碰 队形保持 Is: mobile robots swarm robots non-convex obstacles simplified virtual-force model collision avoidance forma- tion keeping
  • 相关文献

参考文献17

  • 1Sahin E.Swarm Robotics:From Sources of Inspiration to Domains of Application[M].Berlin,Heidelberg:Springer,2005.10-20. 被引量:1
  • 2Phan T A,Russell R A.A swarm robot methodology for collaborative manipulation of non-identical objects[J].The International Journal of Robotics Research,2012,31(1):101-122. 被引量:1
  • 3张勇,巩敦卫,胡滢,张建化.室内噪声环境下气味源的多机器人微粒群搜索方法[J].电子学报,2014,42(1):70-76. 被引量:7
  • 4Brambilla M,Ferrante E,Birattari M,et al.Swarm robotics:A review from the swarm engineering perspective[J].Swarm Intelligence,2013,7(1):1-41. 被引量:1
  • 5Ni J J,Yang S X.Bioinspired neural network for real-time cooperative hunting by multi-robots in unknown environments[J].IEEE Transactions on Neural Networks,2011,22(12):2062-2077. 被引量:1
  • 6胡俊,朱庆保.基于动态预测目标轨迹和围捕点的多机器人围捕算法[J].电子学报,2011,39(11):2480-2485. 被引量:18
  • 7李珺,潘启树,周浦城,洪炳镕.未知环境下多机器人协作追捕算法[J].电子学报,2011,39(3):567-574. 被引量:4
  • 8Xiong J F,Tan G Z.Virtual forces based approach for target capture with swarm robots[A].Proceedings of Control and Decision Conference[C].China:CDC Press,2009.642-646. 被引量:1
  • 9Pimenta L C A,Pereira G A S,Michael N,et al.Swarm coordination based on smoothed particle hydrodynamics technique[J].IEEE Transactions on Robotics,2013,29(2):383-399. 被引量:1
  • 10Ghanaatpishe M,Mousavi S M A,Abedini M,et al.Following,surrounding and hunting an escaping target by stochastic control of swarm in multi-agent systems[A].Proceedings of the 2nd International Conference on Control,Instrumentation and Automation[C].Bandung:IEEE,2011.576-581. 被引量:1

二级参考文献43

共引文献56

同被引文献17

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部