期刊文献+

弱通信条件下USV对AUV的自主跟踪控制研究 被引量:2

Autonomous tracking unmanned underwater vehicle using unmanned surface vehicle under the condition of weak communication
原文传递
导出
摘要 为实现弱通信条件下对AUV的无人跟踪,提出了一种利用USV自主跟踪AUV的方法.通过USV与AUV之间水声通信,USV导航单元计算目标航向角,确保USV达到目标AUV轨迹.为保证跟踪安全,USV与AUV之间的距离应保持一定,同时增加安全区设置,防止危险.将USV三自由度动力学方程进行解耦,分别设计速度跟踪和航向角跟踪控制器,并在速度跟踪控制中将安全距离同时作为控制目标.通过引入状态反馈实现闭环极点配置,保证距离、航向角和速度跟踪误差在USV输出能力下达到渐进稳定.针对水声通信中断期间AUV位置未知情况,通过动态滑动采样AUV历史轨迹,预测目标位置,达到继续跟踪的目的.仿真实验和湖上试验结果表明,USV应用本算法可在复杂的水声通信环境下实现对AUV持续、稳定的自动跟踪,效果令人满意. In order to realize unmanned tracking for underwater robots under weak communication, a method for autonomous tracking underwater robot(AUV) using unmanned surface vehicle(USV) is proposed. The approach consists of a navigation component that computes the desired heading angle and velocity to ensure that the USV moves along the path. The safe domain of USV and the distance between USV and AUV are designed to avoid danger of collision. Both the velocity and heading tracking controllers are designed based on the three freedom dynamics equations of USV, and the safe distance is set by the way of desired controlling objective value in velocity tracking controller. The designed controllers realize exponential tracking of distance, velocity and heading through state feedback. Sample points of moving state are updated dynamically to predict the next position of AUV during the period of broken communication. The simulation and lake experiment showed that the USV could autonomously track underwater robot with stability and continuity by the proposed algorithm in the environment with complex acoustic communication. The results are satisfactory.
出处 《科学通报》 EI CAS CSCD 北大核心 2013年第S2期49-54,共6页 Chinese Science Bulletin
基金 国家自然科学基金(51309215) 国家高技术研究发展计划(2011AA09A102)资助
关键词 USV AUV 自主跟踪 动态预测 状态反馈 安全区 USV,AUV,autonomous tracking control,dynamic prediction,state feedback,safe domain
  • 相关文献

参考文献6

二级参考文献29

  • 1曹志强,张斌,王硕,谭民.未知环境中多移动机器人协作围捕的研究(英文)[J].自动化学报,2003,29(4):536-543. 被引量:13
  • 2彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(z1):1982-1988. 被引量:79
  • 3王巍,宗光华.基于“虚拟范围”的多机器人围捕算法[J].航空学报,2007,28(2):508-512. 被引量:15
  • 4[1]Myung-Hyun Kim. Nonlinear control and robust observer design for marine vehicle[D]. Virginia State: Virginia State University, 2000 被引量:1
  • 5[2]Louis Whitecomb etc. Advances in doppler-based navigation of underwater robotic vehicle[A]. In Proceedings of the IEEE International Conferences on Robotics & Automation[C],1999. 399-406 被引量:1
  • 6[3]Bennamon M, etc. The Development of an Integrated GPS/INS/SONAR Navigation System for Autonomous Underwater Vehicle Navigation[A]. Proceedings of IEEE OCEAN's96 [C]. 1996. 256-261 被引量:1
  • 7[4]Mohamed A H, etc. Adaptive kalman filter for INS/GPS[J]. Journal of Geodesy, 1999. 193-203 被引量:1
  • 8[5]Schmiegel A U. A Stabilized model-based kalman filter for underwater navigation[A]. In Proceedings Conference on BAE SYSTEMS Signal & Data Processing[C]. 2002 被引量:1
  • 9[6]Andreas Huster etc. Relative position estimation for intervention-capable AUVs by fusing vision and inertial measurements[A]. In Proceedings of the 12th International Symposium on Unmanned Untethered Submersible Technology[C]. Durham NH: August 2001. Autonomous Undersea Systems Institute. 被引量:1
  • 10[7]White NA. MMAE Detection of Interference/jamming and Spoofing in a DGPS-aided Inertial System[D]. MS Thesis: Air Force Institute of Technology, Ohio, 1996 被引量:1

共引文献45

同被引文献29

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部