期刊文献+

用群体智能原则控制群机器人搜索(英文) 被引量:8

Control over Swarm Robots Search with Swarm Intelligence Principles
下载PDF
导出
摘要 用群机器人搜索定位矿难幸存者,可为人工施救提供决策参考。群机器人系统的建模基于个体有限感知和局部交互等群体智能原则,将机器人抽象为封闭2维空间的运动粒子,机器人与控制器综合抽象为一阶惯性环节。给出了机器人的感知函数、邻域结构及初始化区域的定义,以此为基础进行虚拟多agent搜索。针对机器人的最大运动速度和质量惯性等约束,交替施加螺旋控制以发现信号线索;施加扩展微粒群控制进行目标搜索。通过改变通信距离和感知范围进行了仿真实验,结果表明了控制策略的有效性。 Swarm robots possess the potential location of victim during the most critical early and its controller as an inertial element and to save lives by providing the rescuers hours in coal mine disaster areas. Robot modeled such distributed system at an abstract level were viewed according to the swarm intelligence principles, which used a virtual multi-agents search to locate the target in a closed 2-D space. The control over robots was attributed to two kinds: moving spirally to search for cues and extending particle swarm optimization to search for target. The former is to offer evidence for the latter working. Then the definitions of sensing function, neighborhood structure andinitiating area of robots were given. Taking the limited sense ability and local interaction mechanism into account, the properties of the system were obtained by changing different parameters such as number of robots, communication range and sense scope in simulating experiment. The simulation results indicate validity of the control strategy.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第13期3449-3454,共6页 Journal of System Simulation
基金 National Natural Science Foundation of China(No.60674104)
关键词 群体智能 群机器人 扩展微粒群算法 目标搜索 swarm intelligence swarm robots extended particle swarm optimization target search
  • 相关文献

参考文献21

  • 1L Marques, U Nunes, A T de Almeida. Particle swarm-based olfactory guided search [J]. Autonomous Robotics (S0929-5593), 2006, 20: 277-287. 被引量:1
  • 2J Pugh, A Martinoli. Inspiring and Modeling Multi-Robot Search with Particle Swarm Optimization [C]// Proceedings of the 4th IEEE Swarm Intelligence Symposium, Honolulu, Hawaii, USA, April 1-5, 2007. USA: IEEE, 2007. 被引量:1
  • 3C Di Chio, R Poli, P Di Chio. Extending the Particle Swarm Algorithm to Model Animal Foraging Behaviour [C]// International Workshop on Ant Colony Optimization and Swarm Intelligence, Brussels, Belgium, 2006, September 4-7. 2006: 514-515. 被引量:1
  • 4C Di Chio, R Poli, P Di Chio. Modelling Group-Foraging Behaviour with Particle Swarms, PPSN2006 [C]//Ninth International Conference on Parallel Problem Solving from Nature, 2006. 被引量:1
  • 5S Doctor, G K Venayagamoorthy, V G Gudise. Optimal PSO for Collective Robotic Search Applications [C]// IEEE Congress on Evolutionary Computation, 2004, June 19-23, Portland, OR. USA: IEEE: 1390-1395. 被引量:1
  • 6X Cui, T Hardin, R K Ragade, A S Elmaghraby. A Swarm Approach for Emission Sources Localization. [C]//The 16th IEEE International Conference on Tools with Artificial Intelligence, 2004, Boca Raton, Florida, USA. USA: IEEE. 被引量:1
  • 7J Kennedy, R Eberhart. Particle swarm optimization. [C]// Neural Networks, Proc. of IEEE International Conference on, 1995, Nov/Dec, USA: IEEE, 1995: 1942-1948. 被引量:1
  • 8F, Mondada, D Floreano, A Guignard, et al. Search for Rescue: An Application for the SWARM-BOT Self-Assembling Robot Concept [R]// Technical Report, I2S-LSA-STI, Swiss Federal Institute of Technology, Lausanne, Switzerland, September 2002. 被引量:1
  • 9W Jatmiko, K Sekiyama, T Fukuda. A PSO-based Mobile Sensor Network for Odor Source Localization in Dynamic Environment: Theory, Simulation and Measurement. [C]// IEEE Congress on Evolutionary Computation. Vancouver, BC, Canada, 2006, July 16-21. USA: IEEE, 2006: 1036-1043. 被引量:1
  • 10J Brusey, M Harrison, Ch Floerkemeier, M Fletcher. Reasoning about uncertainty in location identification with RFID. [C]// IJCAI-2003 Workshop on Reasoning with Uncertainty in Robotics, 2003. 被引量:1

同被引文献42

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部