摘要
齿轮故障信号具有不平稳特性,故障信号特征向量难提取,典型的齿轮故障数据样本少。针对这些问题,本文提出基于经验模式分解( EMD)和支持向量机( SVM)相结合的诊断方法。首先通过传感器采集得到加速度信号,再通过EMD分解将加速度信号分解成多个稳定的本征模态函数信号( IMFs)。因为SVM能够在小样本集情况下建立决策规则,所以将IMFs的前几项作为特征向量输入SVM训练,对样本训练、测试并诊断故障。齿轮故障诊断实验结果表明:本文所提出方法诊断准确率达92.5%,可实现齿轮故障信息提取和齿轮故障的有效诊断。
出处
《计量技术》
2015年第5期3-6,13,共5页
Measurement Technique
基金
国家自然科学基金项目(51375467)
质检公益性行业科研专项项目(201410009)