期刊文献+

多参考信号的ICA方法及其在去除脑电伪差中应用 被引量:1

ICA method with multi-references and its application to removing artifacts from brain signals
下载PDF
导出
摘要 为消除脑电信号中的心电、眼电等伪差,在已有的不动点算法和带参考信号的独立分量分析算法的基础上,提出了一种多参考信号的独立分量分析方法.该方法通过计算各伪差在各路观测信号中的比重,去除伪差对观测信号的影响,从而得到较为纯净的脑电信号.所提方法相对于传统的fast ICA算法具有更小的计算量,并且不需要对分离的独立源进行人工干预,同时也是对ICA-R算法的一种扩展,解决了其只能提取单路源信号的缺点.仿真实验证明该方法更切合实际情况,而且能够更加有效地去除脑电信号中的多个伪差. In order to eliminate the effect of artifacts in electroencephalograph (EEG) signals, such as electrocardiogram (ECG) and electrooculogram (EOG), etc. , a new ICA (independent component analysis) method with multi-references is proposed based on the fixed-point algorithm and the ICA algorithm with references. After the proportions of artifacts in observation signals are calculated respectively, the comparatively pure EEGs are separated from the artifacts. Compared with fast ICA, the new method has less computational complexity and doesnrt need to dispose the independent sources. In addition, it can overcome the defect of ICA-R algorithm which just extracts single signal. Computer simulation demonstrates that the new method can effectively remove several artifacts from brain signals.
作者 邱天爽 武建
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第5期740-743,共4页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(30574075 30170259 60372081) 教育部博士学科点专项科研基金资助项目(20010141025)
关键词 独立分量分析 参考信号 伪差去除 脑电信号 independent component analysis (ICA) reference signals artifacts removing electroencephalograph (EEG) signal
  • 相关文献

参考文献7

  • 1周昌贵编著..临床脑电图手册[M].成都:四川辞书出版社,1990:292.
  • 2杨福生,洪波著..独立分量分析的原理与应用[M].北京:清华大学出版社,2006:205.
  • 3HYVARINEN A, OJA E. A fast fixed-point algorithm for independent component analysis [J]. Neural Computation, 1997, 9(7) :1483-1492. 被引量:1
  • 4HYVARINEN A. New approximations of differential entropy for independent component analysis and project pursuit [J]. Advances in Neural Information Processing System, 1998, 10: 273-279. 被引量:1
  • 5HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis [J].IEEE Transaction on Neural Networks, 1999, 10(3): 626-634. 被引量:1
  • 6BARROS A K, VIGARIO R. Extraction of event-related signals from multichannel bioelectrical measurements [J]. IEEE Transaction on Biomedical Engineering, 2000, 47(5):583-588. 被引量:1
  • 7GOLDBERGER A L, AMARAL L, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet.. Components of a new research resource for complex physiologic signals [J/OL]. (2000-01-13) Circulation, 2000, 101(23):215-220. 被引量:1

同被引文献14

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部