期刊文献+

面向车辆防撞的车底阴影检测方法 被引量:3

Vehicle collision avoidance oriented shadow detection
下载PDF
导出
摘要 为解决常用车底阴影检测方法在复杂光照及背景条件下检测结果不稳定的问题,提出一种基于聚类分析的车底阴影检测方法。使用改进的高斯混合模型聚类算法对交通图像中的目标,即路面、车道线、车辆、车底阴影进行聚类,利用高斯阴影模型的均值与方差自适应阈值分割图像,提取路面与车底阴影的交线,利用阴影的几何结构特征对检测到的阴影线进行两次合并,得到最终结果。实验结果表明,该方法能有效检测车底阴影,适应白天不同时段、光强变化,在复杂投影的干扰下能实现准确检测。 To solve the problem of the instability of most shadow detection methods under the conditions of complex background and light,a vehicle shadow detection method based on clustering analysis was proposed.The Gauss mixture model was applied to cluster the objects in images such as the road,lane lines,shadows and vehicles,shadow threshold was calculated according to the mean and variance of the Gaussian shadow model,thus both the shadow image and the intersecting lines of the vehicle shadow and the road were generated.Finally the initial position of the vehicle was located by merging the lines twice with the use of the geometric structure of the vehicle.The experimental results show that the method can not only detect the shadow underneath a vehicle effectively,but also adapt to the change of different time of the day and the intensity of light.For the interference of com-plex proj ection,the shadow of preceding vehicles can be detected.
作者 任薇 任明武
出处 《计算机工程与设计》 北大核心 2015年第5期1311-1316,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(91220301) 南京理工大学重点实验室基金项目(30920130122005/6)
关键词 驾驶主动安全 车辆检测 高斯混合模型 K均值聚类 最大期望算法 active driving safety vehicle detection Gauss mixture model K-means clustering EM algorithm
  • 相关文献

参考文献15

  • 1Schreer, Oliver. Fast and robust shadow detection in videocon- ference applications [C] //Video/Image Processing and Multi- media Communications 4th EURASIP-IEEE Region 8 Interna tional Symposium on VIPromCon. IEEE, 2002. 被引量:1
  • 2Machlica L, Vanek J, Zajic Z. Fast Estimation of Gaussian Mixture Model Parameters on GPU using CUDA [C] //12th International Conference on Parallel and Distributed Compu- ting, Applications and Technologies. IEEE, 2011.. 167-172. 被引量:1
  • 3Zhou J, Gao D, Zhang D. Moving vehicle detection for auto- matic traffic monitoring [J]. IEEE Transactions on Vehicular Technology, 2007, 56 (1): 51-59. 被引量:1
  • 4Kim J, Baek J, Kim D Y, et al. On-road vehicle detection based on effective hypothesis generation [C] //RO-MAN, IEEE, 2013: 252-257. 被引量:1
  • 5Salvador E, Calvallaro A, Ebrahimi T. Cast shadow segmen- tation using invariant color features [J]. Computer Vision and Image Understanding, 2004, 95 (2): 238-259. 被引量:1
  • 6Sun Z, Bebis G, Miller R. On-road vehicle detection: A re- view [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (5): 694-711. 被引量:1
  • 7雷美琳,肖志涛,崔琴.基于双特征的前方车辆实时检测[J].天津师范大学学报(自然科学版),2010,30(1):23-26. 被引量:7
  • 8Sivaraman S, Trivedi M M. Active learning for on-road vehi- cle detection: A comparative study [J]. Machine Vision and Applications, 2014, 25 (3): 599-611. 被引量:1
  • 9沈峘,李舜酩,柏方超,缪小冬,李芳培,卢文玉.融合多种特征的路面车辆检测方法[J].光电子.激光,2010,21(1):74-77. 被引量:11
  • 10Zhu Qidan, Jing Liqiu, Bi Rongsheng. Exploration and im- provement of OTSU threshold segmentation algorithm [C] // Intelligent Control and Automation, 2010: 6183-6188. 被引量:1

二级参考文献48

  • 1皮燕妮,史忠科,黄金.智能车中基于单目视觉的前车检测和跟踪[J].计算机应用,2005,25(1):220-223. 被引量:13
  • 2Bertozzi M, Broggi A, Castelluccio S. A real-time oriented system for vehicle deteetion[J]. Journal of Systems Architecture, 1997, 43(1/2/3/4/5):317-325. 被引量:1
  • 3Zhu Z G, Xu G Y, Yang B, et al. A real time vision system for automatic traffic monitoring[J]. Image and Vision Computing, 2000, 18(10) :781-794. 被引量:1
  • 4Betke M, Haritaoglu E. Real-time multiple vehicle detection and tracking from a moving vehicle[J]. Machine Vision and Applications, 2000, 12(2): 69-83. 被引量:1
  • 5Zielke T, Brauckmann M, Vonseelen W. Intensity and edgebased symmetry detection with an application to ear following [J]. CVGIP: Image Understand., 1993, 58(2): 177-190. 被引量:1
  • 6Colantonio S, Benvenuti M, Dibono M G, Object tracking in a stereo and infrared vision system[J]. Infrared Physics& Technology, 2007, 49(3) : 266-271. 被引量:1
  • 7Fu K S, Mui J K. Survey on image segmentation[J]. Patern Recognition, 1981, 13(1): 3-16. 被引量:1
  • 8Marola G Using symmetry for detecting and locating objects in a picture[J]. Computer Vision, Graphics, and Image Processing, 1989,46 (2) :179-195. 被引量:1
  • 9Mori H,Oharkari N M. Shadow and rhythm as sign patterns of obstacle detection[A]. International Symposium on Industrial Electrcnics[C]. 1993,271-277. 被引量:1
  • 10TzomBkas C, Seelen W V. Vehicle detection in traffic scenes using shadows[ EB/OL]. http: / / citeseerx, ist. psu. edu/viewdoc/summary? doi= 10.1. 1.45. 3234. 1998.06. 被引量:1

共引文献69

同被引文献4

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部