期刊文献+

基于机器学习反馈的车辆自动路况识别 被引量:4

Machine Learning Feedback Based Vehicle Automated Road Conditions Recognition
下载PDF
导出
摘要 研究车辆路况自动识别的问题,提高识别的准确率和鲁棒性。针对车辆的路况自动识别系统极易受外界环境的影响,传统的基于PCA的路况识别方法在提取路况信息时无法避免恶劣天气等环境的影响,造成最终的识别不准确和鲁棒性不高的问题。为了克服这一难题,提出了基于机器学习的车辆路况自动识别系统。首先采用Haar小波特征提取方法,将受环境影响的路况图像中的有效特征准确提取并降维,然后利用支持向量机选择合适的特征参数,将特征参数输入到AdaBoost分类器中进行分类识别后就完成了最终的车辆路况自动识别,避免了传统方法自动识别受恶劣环境影响的问题。实验证明,这种方法能够有效克服外界环境的影响,准确完成车辆路况的自动识别,并且识别结果具有较好的鲁棒性和满意的效果。 Research the problem of road vehicles automatic identification, and enhance the recognition accuracy and robustness. According to the traffic vehicle automatic identification system easily by external environment, the traditional PCA based road conditions identification method in extracting features cannot avoid the influences of bad weather and environment on traffic, causing inaccurate final recognition and low robustness. In order to overcome this problem, we put forward a machine learning based road vehicles automatic identification system. Firstly, Haar wavelet feature extraction method was used to extract the effective features in the the road condition images which were influenced by the environment and reduce the dimensions. By using support vector machine to choose the appropriate characteristic parameters, the feature parameters were input to AdaBoost classifier of classification after the final road vehicles completed automatic identification, avoiding the bad impact on the environment as in traditional automatic identification method. Experiments show that the method can effectively overcome the influence of the external environment and accurately complete vehicle traffic automatic identification, and the results has good robustness and satisfactory results were obtained.
出处 《计算机仿真》 CSCD 北大核心 2012年第1期339-343,共5页 Computer Simulation
关键词 机器学习 自动识别 路况特征 Machine learning Automatic identification Traffic characteristics
  • 相关文献

参考文献6

二级参考文献24

  • 1牟勇飚,钟诚文.基于安全驾驶的元胞自动机交通流模型[J].物理学报,2005,54(12):5597-5601. 被引量:33
  • 2dhury D Chow, L Santen, A Schadschneider. Statistical physics of vehicular traffic and some related systems [ J ]. Physics Reports, 2000,329 : 199 - 329. 被引量:1
  • 3K Nagel, M Schreckenberg. A cellular automation model for free way traffic [ J ]. J Phys Ⅰ( France), 1992,2 : 2221 - 2229. 被引量:1
  • 4Chen Shu - ping, Huang Ding - wei. Noise properties in the Nagel _Schreckenberg traffic model [ J ]. Phys Rev E, 2001,63 ( 3 ) : 036110. 被引量:1
  • 5S Cheybani, J Kertesz, M Schreckenberg. Nondeterministic Nagel -Schreckenberg traffic model with open boundary condition [ J ]. Phys Rev E, 2000,63 ( 1 ) :016108. 被引量:1
  • 6韦岗 贺前华.神经网络模型学习及应用[M].北京:电子工业出版社,1994.85-98. 被引量:6
  • 7Bertozzi M, Broggi A, Fascioli A. Vision-based intelligent vehicles: state of the art and perspectives. Robotics and Autonomous Systems, 2000(3):1~16 被引量:1
  • 8Murphey Y L, Chen J, Crossman J, et al. Depth finder, a real-time depth detection system for aided driving. Proceedings of the IEEE Intelligent Vehicles Symposium, 2000(10): 122~127 被引量:1
  • 9Knoeppel C, Michaelis B, Schanz A. Robust vehicle detection at large distance using low resolution cameras. Proceedings of the IEEE Intelligent Vehicles Symposium, 2000(10):267~272 被引量:1
  • 10Xu Youchun, Wang Rongben, Li Bing, et al. A vision navigation algorithm based on linear model. Proceedings of the IEEE Intelligent Vehicles Symposium, 2000(10): 240~245 被引量:1

共引文献29

同被引文献57

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部