期刊文献+

基于无标度摄像机的车流速度估计算法研究 被引量:1

Research on vehicle speed estimating algorithm based on non-calibrated camera
下载PDF
导出
摘要 该算法假定视频帧中的车辆近似于在二维平面上沿着直线运动,由像素在图像中的不同定位来表示车辆在图像中的运动距离,在跟踪车辆的过程中获得比例系数,再通过一个适合比例系数的线性方程,对实际运动距离进行估计。由实际运动距离和已知的帧率就可以对车流速度进行估计。实验结果表明,在既没有对摄像机进行直接控制,也没有在场景中放置标度物体的前提下,算法具有一定的有效性与准确性。 The algorithm allows the recovery of the physical descriptions of traffic scenes without explicit camera calibration, extracts scaling signatures using a car length distribution and computes the speed distribution on the basis of the geometric relationships in the image. The results presented here demonstrate the validity of this algorithm which requires neither direct camera control nor placement of a calibration object in the environment.
作者 刘萌萌
出处 《计算机工程与设计》 CSCD 北大核心 2008年第15期4103-4105,4108,共4页 Computer Engineering and Design
基金 安徽省高校青年教师科研基金项目(2006jql211)
关键词 智能交通 车辆跟踪 速度估计 无标度 摄像机 intelligent transportation vehicle tracking speed estimating non-calibration camera
  • 相关文献

参考文献8

  • 1Dailey D J. An algorithm to estimate vehicle speed using un-calibrated cameras [C]. Proceedings of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems.Piscataway, NJ: IEEE, 1999:441-446. 被引量:1
  • 2Dailey D J. A statistical algorithm for estimating speed from single loop volume and occupancy measurements[J]. Transportation Research B: Methodological,1999,33(5):313-322. 被引量:1
  • 3Masoud O, Papanikolopoulos N P, Kwon E, The use of computer vision in monitoring weaving sections[J]. Intelligent Transportation Systems,2001,2(1): 18-25. 被引量:1
  • 4李云翀,何克忠,贾培发.基于阴影特征和Adaboost的前向车辆检测系统[J].清华大学学报(自然科学版),2007,47(10):1713-1716. 被引量:19
  • 5田思,袁占亭.计算机视觉系统框架的新构思[J].计算机工程与应用,2000,36(6):57-59. 被引量:8
  • 6王春波..交通监控中视觉信息的检测与跟踪技术的研究[D].上海交通大学,2000:
  • 7王宏等.计算机视觉-一种现代方法[M].北京:电子工业出版社,2004. 被引量:1
  • 8张智星著..MATLAB程序设计与应用[M].北京:清华大学出版社,2002:392.

二级参考文献9

  • 1刘成君,戴汝为.计算机视觉研究的进展[J].模式识别与人工智能,1995,8(A01):59-69. 被引量:4
  • 2Sun Z, Bebis G, Miller R. On-road vehicle detection: A review [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2006, 28(5) : 694 - 711. 被引量:1
  • 3Mori H, Charkai N. Shadow and rhythm as sign patterns of obstacle detection [C]// Proc IEEE Int'1 Syrup Industrial Electronics. Budapest: IEEE Press, 1993:271 - 277. 被引量:1
  • 4Tzomakas C, Seelen W. Vehicle detection in traffic scenes using shadows, Internal Report 98-06 [R]. Bochum, Germany: Institut for Neuroinformatik, Ruht-Universitat Bochum, 1998. 被引量:1
  • 5Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting [J]. J Computer & System Sciences, 1997, 55(1): 119 - 139. 被引量:1
  • 6Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [C] // Proc IEEE Conf Computer Vision & Pattern Recognition. Kauai, HI, USA: IEEE Press, 2001 : I 511 - 518. 被引量:1
  • 7Milos S. Real time object detection in images based on an adaboost machine learning approach and a small training set [C] // Proc 12th Intl Workshop on Systems, Signals & Image Processing. Chalkida, Greece : Inderscience Enterprises Ltd, 2005: 117- 122. 被引量:1
  • 8Intel Corporation. Open source computer vision library [EB/OL]. [2006-8-2]. http: //www. intel. com/technology/computing/opencv/index. htm. 被引量:1
  • 9Welch G, Bishop G. An introduction to the Kalman filter [EB/OL]. [-2006-8-2]. http: //www. cs. unc. edu/-welch/kalman/kalmanIntro. html. 被引量:1

共引文献25

同被引文献5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部