期刊文献+

基于基追踪去噪的水声正交频分复用稀疏信道估计 被引量:22

Sparse channel estimation of underwater acoustic orthogonal frequency division multiplexing based on basis pursuit denoising
原文传递
导出
摘要 针对传统的l2-范数信道估计精度低的问题,提出了一种基于基追踪去噪(BPDN)的水声正交频分复用稀疏信道估计方法,该方法针对水声信道的稀疏特性,利用少量的观测值即可以很高的精度估计出信道冲激响应.与贪婪追踪类算法相比,基于BPDN算法的稀疏信号估计具有全局最优解,采用l2-l1范数准则估计信号,同时考虑了观测值含噪情况,通过调整正则化参数控制估计信号稀疏度和残余误差之间的平衡.仿真分析了导频分布、正则化参数等对BPDN算法的影响以及BPDN算法与最小平方(LS)、正交匹配追踪(OMP)信道估计算法的性能.湖试结果表明,在稀疏信道下,基于BPDN的信道估计方法明显优于LS和OMP信道估计方法. To solve the problem of poor performance of the traditional 12-norm channel estimation, a sparse channel estimation approach based on basis pursuit denoising (BPDN) is proposed in orthogonal frequency division multiplex underwater acoustic communication. Owing to the sparsity of the underwater acoustic channel, only a few observations are needed to recover the channel impulse response with a high accuracy. Compared with greedy pursuit algorithm, BPDN algorithm has the globally excellentest solution. The signal is estimated based on the 12-11 norm rule and the observations containing the noise are considered. The regnlarization parameter can be changed to balance the signal's sparsity against the residual error. The influences of the pilot distribution and the regularization parameter on the BPDN algorithm are discussed in the simulation. The BPDN channel estimator is compared with the least square (LS) and also with orthogonal matching pursuit (OMP). The data collected from lake experiment show that the BPDN channel estimator outperforms the LS and OMP channel estimator over spare underwater acoustic channel.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第6期223-230,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11274079)和国家自然科学基金青年科学基金(批准号:11304056)资助的课题~~
关键词 基追踪去噪 正交频分复用 稀疏信道估计 正交匹配追踪 basis pursuit denoising, orthogonal frequency division multiplex, sparse channel estimation,orthogonal matching pursuit
  • 相关文献

参考文献3

二级参考文献52

  • 1S.Chen, Donoho, D.L., Saunders M.A. Atomic Decomposition by Basis Pursuit. SIAM J.Sci.Comp.,1999;20(1):33-61. 被引量:1
  • 2D. L.Donoho, Michael Elad. Optimally Sparse Representation in General Dictionaries via 11 Minimization, PNAS, 2003;100(5):2197-2202. 被引量:1
  • 3Mallat S 著 杨力华译.信号处理的小波导引(第二版)[M].北京:机械工业出版社,2002.319-320. 被引量:1
  • 4Mujdat Cetin, Dmitry M.Malioutov, Alan S. Willsky.A variational technique for source localizationbased on a sparse signal reconstruction perspective. Proceedings of the 2002IEEE International Conference on Acoustics, Speech, and Signal Processing,Orlando, FL,May 2002. 被引量:1
  • 5D. L. Donoho.De-noising by Soft Thresholding,IEEE Transactions on Information Theory,1995; (41):613-627. 被引量:1
  • 6Zhang Q S, Lv X X, Yu Q T, Liu G Y 2009 Chin. Phys. B 18 2764. 被引量:1
  • 7Huang L M, Ditag Z H, Hong W, Wang C 2012 Acta Phys. Sin. 61 023401. 被引量:1
  • 8Yang S H, Yin G Z, Xing D 2010 Chin. Phys. Lett. 27 094302. 被引量:1
  • 9Zhang C H, Liu J Y 2006 Physics 35 408. 被引量:1
  • 10Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289. 被引量:1

共引文献27

同被引文献162

引证文献22

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部