期刊文献+

一种基于贪婪基追踪算法的压缩感知超宽带信道估计方法 被引量:3

An Ultra-Wideband Channel Estimation Method Based on Greedy Basis Pursuit of Compressed Sensing Theory*
下载PDF
导出
摘要 超宽带系统信道在特定的场景下,可表现出较强的稀疏特性。考虑IEEE802.15.4a提供的UWB信道参考模型,选取其中稀疏特性较强的信道场景作为背景,结合压缩感知理论对信道估计进行了研究。研究中着重考虑了压缩感知过程的信号重构算法,将一种贪婪的基追踪算法应用到信道模型的重构过程,计算机仿真结果表明信道的稀疏性能够得到准确表达,且稳定性和计算效率均比较理想。 The impnlse response of Ultra-Wideband channel showing strong sparsity in partilucar scenarios. Researched the channel estimation problem based on compressed sensing theory, with consideration of the reference Ultra- Wideband channel models offered by IEEE 802.15.4a. Different reconstruction algorithms of compressed sensing are studied, and a greedy basis pursuit algorithm is applied to the sparse channel reconstruction. The computer simulation indicates that the proposed method has ideal stability and computational efficiency.
出处 《移动通信》 2013年第2期70-76,82,共8页 Mobile Communications
基金 广东省教育部产学研结合项目资助(2009B090300393) 广州市软件(动漫)产业发展资金项目资助(2060404)
关键词 超宽带 信道估计 稀疏信道 压缩感知 贪婪基追踪 ultra-wideband channel estimation sparse channel compressed sensing greedy basis pursuit
  • 相关文献

参考文献20

  • 1Porcino D,Hirt W. Ultra-wideband radio technology:potential and challenges ahead[J].IEEE Communications Magazine,2003,(07):66-74.doi:10.1109/MCOM.2003.1215641. 被引量:1
  • 2Di Benedetto M G,Kaiser T. In UWB Communication Systerns-A comprehensive overview[M].New York:Hindawi Publishing Corporation,2006. 被引量:1
  • 3Paredes J L,Arce G R,Zhongmin Wang. Ultra-wideband compressed seining:Channel estimation[J].Selected Topics in Signal Processing IEEE Journal of,2007,(03):383-395. 被引量:1
  • 4Donoho D L. Compressed sensing[J].IEEE Transactions on Information Theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582. 被引量:1
  • 5CANDES E. Compressive sampling[A].2006. 被引量:1
  • 6喻玲娟,谢晓春.压缩感知理论简介[J].电视技术,2008,32(12):16-18. 被引量:39
  • 7张先玉,刘郁林,王开.超宽带通信压缩感知信道估计与信号检测方法[J].西安交通大学学报,2010,44(2):88-91. 被引量:19
  • 8石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:710
  • 9Huggins P S,Zucker S W. Greedy basis pursuit[J].Signal Processing IEEE Transactionson,2007,(07):3760-3772.doi:10.1109/TSP.2007.894287. 被引量:1
  • 10Andreas F Molisch,Kannan Balakrishnan. IEEE802.15.4a channel model-Final report[R].2004. 被引量:1

二级参考文献105

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2DONOHO D. Compressed sensing[J]. IEEE Trans. Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 3CANDES E. Compressive sampling[C]/[Proceedings of the International Congress of Mathematicians. Madrid, Spain: [s.n.], 2006:1433- 1452. 被引量:1
  • 4CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. Information Theory, 2006, 52(4): 489-509. 被引量:1
  • 5TROPP J, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Trans. Information Theory, 2007, 53(12): 4655-4666. 被引量:1
  • 6ZOU J, GILBERT A C, STRAUSS M J, et al. Theoretical and experimental analysis of a randomized algorithm for sparse Fourier transform analysis[J]. Journal of Computational Physics, 2006, 211(2): 572 -595. 被引量:1
  • 7GAN Lu. Block compressed sensing of natural images[C]//Proceedings of the International Conference on Digital Signal Processing. [S.l.]: IEEE Press, 2007:403-406. 被引量:1
  • 8DONOHO D, TSAIG Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548. 被引量:1
  • 9FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE J-STSP,2007,1(4): 586-598. 被引量:1
  • 10TROP J A. Greed is good: algorithmic results for sparse approximation[J]. IEEE Trans. Information Theory, 2004, 50(10):2231-2242. 被引量:1

共引文献748

同被引文献21

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部