期刊文献+

基于2-范数匹配的分形图像编码改进算法 被引量:9

Improved Fractal Image Coding Algorithm Based on Two-norm Match
下载PDF
导出
摘要 为解决分形图像编码过程中编码时间过长的问题,对基于2-范数匹配的快速分形图像编码算法进行改进,通过对误差公式的推导,得出误差与图像块方差的不等式,利用该不等式剔除不匹配的码本块,减少计算量。实验结果表明,与原算法相比,改进算法在保证解码图像质量的前提下,进一步提高了编码速度。 To overcome the long encoding time of fractal image coding, this paper uses a fast fractal image encoding method based on two-norm, and improves it by using the error formula, which can derive an inequality of block's variance. This inequality is the basis to kick out the dismatched domain block, it can reduce the computational. Experimental results show that, compared with the two-norm method, the proposed algorithm improves the encoding speed, while provides the same image quality.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第4期205-206,209,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60374054 60743010) 山东省自然科学基金资助项目(Z2006G09 Z2008G02)
关键词 分形编码 2-范数 图像质量 fractal coding two-norm image quality
  • 相关文献

参考文献6

  • 1Barnsley M F, Sloan A D. A Better Way to Compress Images[J]. Byte Magazine, 1988, 13(1): 215-223. 被引量:1
  • 2Jacquin A E. A Fractal Theory of Iterated Markov Operators with Applications to Digital Image Coding[D]. Atlanta, GA, USA:Georgia Institute of Technology, 1989. 被引量:1
  • 3Jacquin A E. Image Coding Based on a Fractal Theory of Iterated Contractive Image Transformations[J]. IEEE Transactions on Image Processing, 1992, 1(1): 18-30. 被引量:1
  • 4Hartenstein H, Saupe D. Lossless Acceleration of Fractal Image Encoding via the Fast Fourier Transform[J]. Signal Processing: Image Communication, 2000, 16(4): 383-394. 被引量:1
  • 5何传江,李高平.分形图像编码的改进算法[J].计算机仿真,2004,21(8):62-65. 被引量:16
  • 6林洪文,杨绍清,夏志军,康春玉.基于分形图像编码的海空目标检测方法研究[J].计算机工程,2007,33(11):199-200. 被引量:1

二级参考文献12

  • 1[1]A E Jacquin. Image coding based on a fractal theory of iterated contractive image transformations [J]. IEEE Trans. Image Process., 1992, 1(1): 18-30. 被引量:1
  • 2[2]B Wohlberg and G Jager. A Review of the Fractal Image Coding Literature [J]. IEEE Trans. Image Process., 1999, 8(12) : 1716-1729. 被引量:1
  • 3[3]M Ruhl and H Hartenstein. Optimal fractal coding is NP-hard[C].Proceedings DCC′97 Data Compression Conference, IEEE Computer Society Press, March 1997: 261-270. 被引量:1
  • 4[4]S K Mitra, C A Murthy and M K Kundu. Technique for Fractal Image Compression Using Genetic Algorithm [J]. IEEE Trans. Image Process., 1998, 7(4): 586-593.[5] R Hamzaouia, H Hartensteinb and D Saupe. Local iterative improvement of fractal image codes [J], Image and Vision Computing 2000, 18: 565-568. 被引量:1
  • 5[5]Y Sun,C Song and Y Zhao.An effective improvement on fractal image coding with same-sized block mapping[J].ICSP′02 Proceedings (0-7803- 7488-6/02, ﹫2002 IEEE),2002:804-807. 被引量:1
  • 6[6]K Belloulata and J Konrad. Fractal image compression with region-based functionality [J]. IEEE Trans. Image Process., 2002, 11(4): 351-362. 被引量:1
  • 7[7]J H Jeng, T K Truong and J R Sheu. Fast fractal image compression using the Hadamard transform[C].IEE Proc.-Vis. Image Signal Process, 2000,147 (6): 571-573. 被引量:1
  • 8Mandelbrot B B.The Fractal Geometry of Nature[M].San Francisco,CA:Freeman,1982. 被引量:1
  • 9Barnsley M,Sloan A.A Better Way to Compress Images[J].BYTE,1988,13(1):215–223. 被引量:1
  • 10Jacquin A E.Fractal Image Coding:a Review[J].Proceedings of IEEE,1993,81(10):1451-1465. 被引量:1

共引文献15

同被引文献70

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部