期刊文献+

时间窗口对个性化推荐算法的影响研究 被引量:2

Effect of the Time Window on the Personalized Recommendation Algorithm
下载PDF
导出
摘要 研究了时间窗口对基于10种用户相似性指标的个性化推荐算法的影响。在标准数据集MovieLens上的实验结果表明,只采用大约12.56%的用户近期历史记录,所得到的推荐结果准确性可以平均提高27.17%,而推荐列表多样性可以平均提高3.28%,极大地降低大规模数据所带来的计算复杂性问题。 In this paper,we investigate the effect of the time window on the personalized recommendation algorithm based on ten similarity measures.The experimental results on the benchmark dataset MovieLens indicate that by only adapting approximately 12.56% recent rating records,the accuracy could be improved by an average of 27.17%,and the diversity could be improved by 3.28%.Our work is valuable in both theory and practice,and it could largely reduce the calculation complexity triggered by massive data.
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2015年第1期28-31,共4页 Complex Systems and Complexity Science
基金 国家自然科学基金(61374177 71371125 71171136) 上海市一流学科建设项目(XTKX2012)
关键词 个性化推荐算法 时间窗口 二部分网络 personalized recommendation algorithm time window bipartite network
  • 相关文献

参考文献3

二级参考文献89

  • 1Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217. 被引量:1
  • 2Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53. 被引量:1
  • 3Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911. 被引量:1
  • 4Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth. 被引量:1
  • 5Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf. 被引量:1
  • 6Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237. 被引量:1
  • 7Billsus D,Pazzani M J.Learning collaborative information filters[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:46-53. 被引量:1
  • 8Basu C,Hirsh H,Cohen W W.Recommendation as classification:using social and content-based information in recommendation[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:714-720. 被引量:1
  • 9Sarwar B M,Karypis G,Konstan J A,et al.Analysis of recommendation algorithms for e-commerce[C]//Proceedings of the 2nd ACM Conference on Electronic Commerce (EC'00).New York:ACM Press,2000:285-295. 被引量:1
  • 10Sarwar B M,Karypis G,Konstan J A,et al.Application of dimensionality reduction in recommender system-a case study[DB/OL].[2008-10-12].http://robotics.stanford.edu/-ronnyk/WEBKDD2000/papers/sarwar.pdf. 被引量:1

共引文献142

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部