摘要
【目的】在电子商务个性化推荐中考虑商品销售的时间动态性和序列模式问题,提高推荐效果。【方法】提出一种改进的个性化推荐算法:引入时间系数和热门系数,改进评分相似性函数,提出新的用户兴趣相似度计算方法;加入商品序列模式,给出二项序列模式挖掘算法,用序列模式对推荐结果进行筛选排序。【结果】利用2004年–2005年亚马逊图书评论数据进行测试,与基于修正余弦的协同过滤算法相比较,改进算法的推荐准确率和F值分别提高1.89%和0.73%。【局限】该算法没有考虑用户评价分数高低个人倾向的影响。【结论】改进的相似性函数和通过序列模式对结果进行筛选两个方面均能提高个性化推荐效果。
[Objective] This study is to improve the effectiveness of merchandise recommendation based on temporal dynamics and sequential patterns of sales. [Methods] We developed an improved personalized recommendation algorithm for electronic commerce. First, we introduced a new similarity calculation function with time and hot coefficients. Then, we proposed an algorithm with the two-item sequential pattern, which modified the recommended list based on the sequential patterns. [Results] We examined the new method with book review data of Amazon.corn from 2004-2005, and found its precision and F values were 1.89% and 0.73% higher than the collaborative filtering algorithm with adjusted cosine similarity. [Limitations] The proposed model did not examine the violations of consumers' review scores. [Conclusions] Both the similarity function and sequential patterns can improve the effectiveness of personalized recommendation algorithms for e-commerce.
作者
李杰
杨芳
徐晨曦
Li Jie;Yang Fang;Xu Chenxi(School of Economics and Management,Hebei University of Technology,Tianjin 300401,China;Jingdong Group,Beijing 100176,China)
出处
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2018年第7期72-80,共9页
Data Analysis and Knowledge Discovery
基金
国家社会科学基金项目"电子商务环境下的消费者认知与行为研究"(项目编号:16FGL014)
河北省自然科学基金项目"电子商务个性化推荐中的动态模式挖掘理论与应用研究"(项目编号:G2014202148)的研究成果之一
关键词
个性化推荐
时间动态性
序列模式
协同过滤
热门系数
Personalized Recommendation
Temporal Dynamics
Sequential Patterns
Collaborative Filtering
Hot Coefficient