期刊文献+

基于TF-IDF分类算法的雷达情报分发技术 被引量:8

Research on intelligence distribution based on TF-IDF classifier
下载PDF
导出
摘要 为了提高情报分发的效率,解决雷达组网上信息过载的问题,提出了一种利用个性化推荐技术过滤情报用户感兴趣的情报信息的技术。根据情报用户兴趣多样性的特点和雷达情报的格式化特征,对情报用户兴趣的类别进行划分,并设计出基于层次向量空间模型;在此基础上,利用用户的历史情报信息和定制信息,运用TF-IDF算法挖掘用户兴趣,建立用户兴趣模型,通过实时情报与用户兴趣模型的匹配,将用户感兴趣的情报分发给用户。仿真实验结果表明,该算法能够较好地实现雷达情报的按需分发。 To improve the efficiency of intelligence distribution,and solve the problem of the information overload on the radar intelligence network,the technology of filtering the users' interested intelligence based on the personalized recommending techniques is proposed.Because of the diversity of users' interests and the special format of radar intelligence,the users' interests are divided into several sorts,and then the hierarchical vector space model is designed.Based on these,historical information and registered data are utilized for TF-IDF classifier to mine the users' interests,which is presented by the hierarchical vector space model.With the discovered user profile,the most matched intelligence is recommended to the users.And the results show that this algorithm can realize radar data distribution for the personalized demands.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第5期1822-1826,共5页 Computer Engineering and Design
关键词 情报按需分发 个性化推荐 层次向量空间模型 兴趣模型 词频-逆文档频率 radar data distribution on demands personalized recommendation hierarchical vector space model user profiling TF-IDF
  • 相关文献

参考文献6

二级参考文献137

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:102
  • 2秦国,杜小勇.基于用户层次信息的协同推荐算法[J].计算机科学,2004,31(10):138-140. 被引量:15
  • 3熊馨,王卫平,叶跃祥.基于概念分层的个性化推荐算法[J].计算机应用,2005,25(5):1006-1008. 被引量:17
  • 4Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217. 被引量:1
  • 5Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53. 被引量:1
  • 6Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911. 被引量:1
  • 7Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth. 被引量:1
  • 8Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf. 被引量:1
  • 9Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237. 被引量:1
  • 10Billsus D,Pazzani M J.Learning collaborative information filters[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:46-53. 被引量:1

共引文献252

同被引文献152

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部