摘要
高锰TWIP钢的高强度、高塑性和高能量吸收能力与其堆垛层错能有关。TWIP效应对应的层错能上、下限值仍未统一,尤其是TWIP向MBIP(微带诱导塑性)转变的临界判据仍有待于深入分析。XRD、TEM和EAM是测定奥氏体层错能最常用的实验方法。同一TWIP钢的层错能及其变化规律存在实验方法的相关性。正规和亚正规溶液模型、Bragg-Williams模型和双亚点阵模型是计算高锰钢层错能的常见模型。对同一TWIP钢来说,不同模型的预测值并不相同,且与实测值也存在差异。铃木效应引起层错能随间隙原子浓度非线性变化,这在计算时是不能忽略的。规范实验方法、提高设备精度和完善热力学模型及其数据库有助于获得准确可靠的层错能值。
The high strength, high ductility and high energy absorption capability of high manganese TWIP steel are closely related to its stacking fault energy (SFE). The SFE range in which TWIP effect occurs is still not wide- ly accepted. The criterion for the transformation from TWIP to MBIP (microbands induced plasticity) is still not clear. XRD, TEM and EAM are the most common measurement methods for SFE of austenite. SFEs measured by various methods are still different. Regular solution model, subregular solution model, statistic thermodynamics model and two-sublattice model are commonly used in SFE thermodynamic calculation. Predicted values for a cer- tain high manganese steel are different, and also different from the experiment results. The nonlinear relationship between SFE and interstitial concentration by Suzuki effect should not be ignored in the calculation. It will be of great help for obtaining an accurate SFE to normalize experimental method, improve device precision and refine thermodynamic model and its database.
出处
《钢铁研究学报》
CAS
CSCD
北大核心
2015年第1期1-6,共6页
Journal of Iron and Steel Research
基金
北京科技大学钢铁冶金新技术国家重点实验室的资助项目(编号41603013)
关键词
TWIP钢
层错能
实验方法
热力学模型
TWIP steel
stacking fault energy
experimental method
thermodynamic model