期刊文献+

改进的线性判别回归分类人脸识别算法 被引量:1

Improved Linear Discriminant Regression Classification for Face Recognition
下载PDF
导出
摘要 对线性回归分类算法进行了改进。考虑了线性回归分类算法中没有考虑的类间信息,通过选择类模式的投影方向判别不同类的模式,不同类的模式互相远离,相同类的模式尽可能靠近来估计投影矩阵;再利用投影矩阵将训练图像及测试图像投影到各类的特征子空间;最后,计算出测试图像与训练图像间的距离,利用K-近邻分类器完成人脸的识别。在FERET人脸数据库上进行实验验证。实验结果表明,相比其他回归分类算法,本算法取得了更好的识别效果。 Linear regression classification algorithm is improved . Consider the information between the classes that linear regression classification algorithm does not be considered . The modes of different class are identified through choosing the projection directions of class mode .Away from each other different types of modes ,the modes of the same class as close as possible to estimate the projection matrix ;Then the training images and the various types of test image is projected onto the subspace by using projection matrix ;Finally ,K-nearest neighbor classifier is used to finish face recognition after calculating the distance between the test image and the training images .Conduct experiments on FERET face database .Experimental results show that compared to other regression classification algorithm ,the algorithm achieved a better recognition effect .
出处 《皖西学院学报》 2014年第5期28-30,共3页 Journal of West Anhui University
基金 甘肃省教育厅科研项目(2013A-124) 甘肃省自然科学基金资助项目(1107RJZA170)
关键词 人脸识别 线性判别 线性回归分类 K-近邻分类器 face recognition linear discriminant linear regression classification K-nearest neighbor classifier
  • 相关文献

参考文献7

二级参考文献58

  • 1张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 2龙飞,董槐林,王备战,史亮.一种基于Gabor描述的概率子空间人脸识别方法[J].电子与信息学报,2007,29(3):626-630. 被引量:6
  • 3Zhong C, Sun Z N, Tan T N, He Z F. Robust 3D face recognition in uncontrolled environments. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8. 被引量:1
  • 4Bowyer K W, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding, 2006, 101(1): 1-15. 被引量:1
  • 5Lu X G, Jain A K. Deformation modeling for robust 3D face matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1346-1356. 被引量:1
  • 6Chang K I, Bowyer K W, Flynn P J. Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1695-1700. 被引量:1
  • 7Besl P J, Mckay H D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. 被引量:1
  • 8Mian A S, Bennamoun M, Owens R.An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11): 1927-1943. 被引量:1
  • 9Beumier C, Acheroy M. Automatic 3D face authentication. Image and Vision Computing, 2000, 18(4): 315-321. 被引量:1
  • 10Dorai C, Jain A K. COSMOS A representation scheme for 3D free-form objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1115-1130. 被引量:1

共引文献63

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部