期刊文献+

微博新词发现及情感倾向判断分析 被引量:8

Analysis on new word detection and sentiment orientation in Micro-blog
原文传递
导出
摘要 由于社交媒体的普及和灵活性,微博中涌现出越来越多的新词来表达情感态度,新词的发现和情感倾向已成为微博研究的热点问题。主要介绍COAE2014评测任务3的方法与技术。首先提出了一个广义后缀树的词串抽取方法,利用左右灵活度等指标发现潜在新词。然后根据上下文信息对前一步发现的潜在新词采用多重词典,基于模板,统计情感词共现手段判断其情感倾向。最后利用搜索引擎从语义角度进一步优化情感倾向结果。实验结果表明此方法对新词发现和情感倾向判断问题是有效的。 Due to popularity and flexibility of social media,more increasingly created words were used to express peoples feelings and attitudes. Newword detection and sentiment orientation has become a hot issue in M icro-blog analysis. The methods and techniques used in Task 3 of COAE 2014 were introduced. Generalized suffix tree was employed in string extraction,which was determined as newwords with metrics like left-right-flexibility of words etc. Then,with pattern-based and statistic-based methods combined with multiple lexicons,sentiment orientation of newwords was decided. Search engine was also used to optimize result as a supplement from semantic perspective. Results have shown our methods effective in newword detection and sentiment orientation analysis.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2015年第1期20-25,共6页 Journal of Shandong University(Natural Science)
基金 高等学校学科创新引智计划(111计划)项目(B08004) 新一代宽带无线移动通信网国家科技重大专项(2011ZX03002-005-01) 国家自然科学基金资助项目(61273217) 博士点基金资助项目(20130005110004)
关键词 广义后缀树 新词发现 情感倾向分析 微博 generalized suffix tree new word detection sentiment orientation analysis Micro-blog
  • 相关文献

参考文献14

二级参考文献76

共引文献849

同被引文献69

  • 1刘群,张华平,俞鸿魁,程学旗.基于层叠隐马模型的汉语词法分析[J].计算机研究与发展,2004,41(8):1421-1429. 被引量:198
  • 2邹纲,刘洋,刘群,孟遥,于浩,西野文人,亢世勇.面向Internet的中文新词语检测[J].中文信息学报,2004,18(6):1-9. 被引量:59
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 4苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 5CHEN A. Chinese word segmentation using minimal linguistic knowledge[C]//Proceedings of the 2nd SIGHAN Workshop on Chinese Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2003: 148-151. 被引量:1
  • 6ZHANG W, YOSHIDA T, TANG X, et al. Improving effectiveness of mutual information for substantival multiword expression extraction[J]. Expert Systems with Applications, 2009, 36(8): 10919-10930. 被引量:1
  • 7BU F, ZHU X, LI M. Measuring the non-compositionality of multiword expressions[C]//COLING '10: Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2010: 116-124. 被引量:1
  • 8HUANG M, YE B, WANG Y, et al. New word detection for sentiment analysis[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2014: 531-541. 被引量:1
  • 9ZHOU G. A chunking strategy towards unknown word detection in Chinese word segmentation[C]//IJCNLP 2005: Proceedings of the Second International Joint Conference on Natural Language Processing, LNCS 3651. Berlin: Springer-Verlag, 2005: 530-541. 被引量:1
  • 10PENG F, FENG F, MCCALLUM A. Chinese segmentation and new word detection using conditional random fields[C]//COLING '04: Proceedings of the 20th International Conference on Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2004: Article No. 562. 被引量:1

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部