期刊文献+

融合情感极性与信任函数的虚假评论检测方法 被引量:3

A fake review detection method using emotional and belief function
下载PDF
导出
摘要 在线评论是用户判断商品质量的一个依据。虚假评论严重影响了消费者的购买行为,现有的虚假评论检测方法从文本出发,忽略了评分的虚假性,评分通常是不精确和不确定的,对虚假评论检测效果不佳。提出融合情感极性与信任函数的虚假评论检测方法(EP-BFRD),利用信任函数处理给定评论者评分中的不确定性和不准确性,考虑与其他评分者提供的评分的相似性,以检测误导性,并判断评论文本情感极性与评分一致性。综合考虑信任函数处理的结果以及评分与文本情感一致性的结果来判断评论的虚假性。在一个真实的数据库上进行实验,实验表明该方法可有效解决虚假评论检测问题。 Online comments are a basis for users to judge the quality of a product, and fake reviews seriously affect the purchase behavior of consumers. Existing fake review detection methods focus on the text and ignore the falseness of scores. Due to inaccurate and uncertain scoring, fake review detection does not work well. We propose a fake review detection method(EP-BFRD) using emotional polarity and trust function. The trust function is used to deal with the uncertainty and inaccuracy in a given reviewer’s score, which are then combined with the similarity to other provided ratings to detect misleading, and to judge the consistency between the emotional polarity of the review text and the score. A fake review is determined by both the processing results of the trust function and the consistency between the scores and text emotion. Experiments on a real database show that the proposed method is an effective solution to fake review detection problem.
作者 杨丰瑞 吴晓浩 万程峰 YANG Feng-rui;WU Xiao-hao;WAN Cheng-feng(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065;Research Center of New Telecommunication Technology Applications,Chongqing University of Posts and Telecommunications,Chongqing 400065;Chongqing Chongyou Information Technology (Group)Co.Ltd.,Chongqing 401121,China)
出处 《计算机工程与科学》 CSCD 北大核心 2019年第9期1679-1685,共7页 Computer Engineering & Science
关键词 虚假评论 情感极性 信任函数 虚假评论检测 fake review emotional polarity trust function fake review detection
  • 相关文献

参考文献7

二级参考文献56

  • 1诸葛建伟,王大为,陈昱,叶志远,邹维.基于D-S证据理论的网络异常检测方法[J].软件学报,2006,17(3):463-471. 被引量:56
  • 2张翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法[J].软件学报,2006,17(5):951-958. 被引量:84
  • 3Jindal N, Liu B. Review spam detection[C]//Proceedings of the 16th International Conference on World Wide Web, 2007: 1189-1190. 被引量:1
  • 4Song Feng, Ritwik Banerjee, Yejin Choi. Syntactic Stylometry for Deception Detection[C]//Proceedings of the 50th Annu- al Meeting of the Association for Computational Linguistics. Jeju, Republic of Korea, 2012:8-14. 被引量:1
  • 5Ott M, Choi Y J,Cardie C,et al. Finding Deceptive Opinion Spare by Any Stretch of the Imagination [C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA : Association for Computational Linguistics, 2011 : 309-319. 被引量:1
  • 6Wang G, Xie S H, Liu B, et al. Review Graph Based Online Store Review Spammer Detection [C]//Proceedings of the 11 th International Conference on Data Mining. Washington, DC, USA : IEEE Computer Society, 2011 : 1242-1247. 被引量:1
  • 7Jindal N,Liu B,Lim E P. Finding Unusual Review Patterns Using Unexpected Rules [C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, NY, USA ; ACM, 2010 : 1549-1552. 被引量:1
  • 8Mukherjee A,Liu B,Wang J H,et al. Detecting Group Review Spam[C]//Proceedings of the 20th International Confer- ence Companion on World Wide Web. New York, NY, USA : ACM, 2011 : 93-94. 被引量:1
  • 9Mukherjee A,Liu B,Glance N. Spotting Fake Reviewer Groups in Consumer Reviews [C]//Proceedings of the 21st In ternational Conference on World Wide Web. New York, NY, USA : ACM, 2012 : 191-200. 被引量:1
  • 10Li F T, Huang M, Yang Y, et al. Learning to Identify Review Spam [C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. AAAI Press, 2011 : 2488-2493. 被引量:1

共引文献46

同被引文献39

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部