期刊文献+

基于差分进化入侵杂草算法的股价预测模型

Prediction model of stock price based on differential evolution invasive weed optimization algorithm
下载PDF
导出
摘要 针对入侵杂草算法易陷入局部最优、后期寻优精度较低等不足,提出一种差分进化入侵杂草(DEIWO)算法用于训练前向神经网络,结合入侵杂草算法的种群多样性和差分进化算法的启发式搜索等特质以增强算法的全局搜索能力和局部挖掘能力,建立基于DEIWO算法的神经网络预测模型。通过实例验证了本文改进的算法具有较好的寻优精度和收敛速度,预测模型可行和有效。 In view of the defects of being easily trapped in the local optimal and low accuracy of later optimiza-tion in invasive weed optimization (IWO) algorithm, a differential evolution invasive weed optimization (DE-IWO) algorithm is proposed for training feed-forward neural network. It takes the advantage of the features ofthe population diversity of IWO and heuristic search of DE, and enhances the global search ability and localmining ability of algorithm. Then, a neural network prediction model based on DEIWO algorithm is estab-lished. The results show that better optimization accuracy and convergence speed of the modified algorithm,and the feasibility and effectiveness of the prediction model are verified by the example verification.
出处 《辽宁科技大学学报》 CAS 2014年第6期561-568,共8页 Journal of University of Science and Technology Liaoning
基金 辽宁省首批"十百千高端人才引进工程"项目资助
关键词 入侵杂草优化算法 差分进化入侵杂草算法 神经网络学习算法 神经网络预测模型 invasive weed optimization algorithm differential evolution invasive weed optimization algo-rithm learning algorithm of neural network prediction model of neural network
  • 相关文献

参考文献10

二级参考文献20

  • 1童明余,肖志祥.GM(1,1)在股票价格预测中的运用[J].黄冈师范学院学报,2005,25(3):9-11. 被引量:7
  • 2杨永国.灰色时序组合模型及其在矿井涌水量预测中的应用[J].水文地质工程地质,1996,23(6):36-38. 被引量:11
  • 3费良俊 李乃奎 等.计算智能技术在金融市场分析中的应用.第4届中国人工智能联合学术会议(CJACI'96)论文集[M].北京:清华大学出版社,1996.353-360. 被引量:1
  • 4Duan Q, Sorooshian S, Gupta V K. Optimal use of SCE-UA global optimization method for calibrating watershed models[J]. Journal of Hydrology, 1994, 158: 265--284. 被引量:1
  • 5Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs[M]. New York: Springer, 1996.24--35. 被引量:1
  • 6Y Hirose,K Yamashita,S Hijiya.Back-Propagation Algorithm Which Varies the Number of Hidden Units[J].Neural Networks, 1991 ; (4) : 61-66. 被引量:1
  • 7P Smagt.Minimization Methods for Training Feedforward Neural Networks[J].Neural Networks, 1994 ; 7 ( 1 ) : 1-11. 被引量:1
  • 8S C Ng,S H Leung.On Solving the Local Minima Problem of Adaptive Learning by Using Deterministic Weight Evolution Algorithm[C]. In :Proceedings of the IEEE Congress on Evolutionary Computation, Seoul, Korea, 2001. 被引量:1
  • 9费良俊,第四届中国人工智能联合学术会议(CJACI’96)论文集,1996年,353页 被引量:1
  • 10Guo Z,Proc COGANN’92,1992年,252页 被引量:1

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部