期刊文献+

蚁群支持向量机在内燃机故障诊断中的应用研究 被引量:13

Fault diagnosis of an engine with an ant colony support vector machine
下载PDF
导出
摘要 针对目前支持向量机参数选择时人为选择的盲目性,将具有良好优化性能的蚁群优化技术应用到支持向量机惩罚函数和核函数参数的优化,提出了蚁群优化支持向量机方法。根据内燃机气门振动信号实测数据,建立了基于蚁群优化支持向量机的内燃机气门间隙故障诊断模型,并与基于遗传支持向量机和反向传播神经网络算法的模型比较。结果表明:应用蚁群优化支持向量机建立的内燃机气门间隙故障诊断模型无论从学习效率还是故障识别准确性上都优于应用另外两种算法建立的模型,能够有效地进行内燃机的故障诊断。 Due to blindness of man-made choice for parameters of a support vector machine(SVM),an ant colony optimization was used to select parameters of SVM;and a novel algorithm 'ant colony optimization support vector machine'(ACO-SVM) was put forward.According to the measured data of the vibration signal of an engine valve,an engine valve fault diagnosis model based on ACO-SVM was established,and compared with the models based on GA-SVM and BPNN.Results showed that the engine valve fault diagnosis model based on ACO-SVM outperforms the models based on the other two algorithms in learning efficiency and diagnosis accuracy,and is effective for engine fault diagnosis.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第3期83-86,共4页 Journal of Vibration and Shock
基金 863计划资助(编号:2006AA04Z408)
关键词 蚁群算法 支持向量机 BP神经网络 故障诊断 ant colony optimization(ACO) support vector machine(SVM) BP neural networks(BPNN) fault diagnosis genetic algorithm(GA)
  • 相关文献

参考文献12

  • 1廖明,石博强,张文明,冯雅丽.分形在柴油机燃油系故障诊断中的应用[J].北京科技大学学报,1998,20(5):417-420. 被引量:11
  • 2张克辉,黄荣华,欧阳光耀,张萍.分形学在柴油机燃油系统故障诊断中的应用[J].华中科技大学学报(自然科学版),2002,30(2):40-42. 被引量:8
  • 3David Logan, Joseph Mathew. Using the correlation dimension for vibration fault diagnosis of rolling element bearings- Ⅰ. Basic Concepts[ J]. Mechanical Systems and Signal Processing, 1996,10 ( 3 ) : 241 - 250. 被引量:1
  • 4夏勇,张振仁,商斌梁.内燃机振动信号的混沌分形特性研究[J].振动与冲击,2001,20(2):64-66. 被引量:5
  • 5Wu Jian-da, Chiang Peng-hsin, Chang Yo-wei, et al. An expert system for fault diagnosis in internal combustion engines using probability neural network [ J ]. Expert Systems with Applications, 2008, 34 (4) :2704 - 2713. 被引量:1
  • 6Frank Kimmich, Anselm Schwarte, Rolf Isermann. Fault detection for modern diesel engines using signal and process model-based methods [ J ]. Control Engineering Practice, 2005,13 (2) :189 -203. 被引量:1
  • 7Nikos G. Pantelelis, Andreas E. Kanarachos, Nikos Gotzias. Neural networks and simple models for the fault diagnosis of naval turbochargers[J]. Mathematics and Computers in Simulation ,2000,51 ( 3 - 4) :387 - 397. 被引量:1
  • 8Colomi A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[ C ]. Proceedings of the First European Conference on Artificial Life. Paris, 1991:134 -142. 被引量:1
  • 9Johann Dr o, Patrick Siarry. A new ant colony algorithm using the heterarchical concept aimed at optimization of multi minima continuous functions[ C ]. Proc of the 3rd Int Workshop on Ant Algorithms ANTS2002. Brussels, 2002,2463 : 216 - 221. 被引量:1
  • 10Chang C S,Tian L, Wen F S. A new approach to fault section estimation in power systems using ant system [ J ]. Electric Power Systems Research. 1999,49:63 -70. 被引量:1

二级参考文献16

共引文献32

同被引文献127

引证文献13

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部