期刊文献+

加权投票采样学习在用户信用评级中的应用 被引量:2

Application of user credit rating based on weighted voting sampling algorithm
下载PDF
导出
摘要 以委员会投票查询算法为基础,提出在采样过程中动态修正分类器成员权值的加权投票方法。在对无标签样本标注价值评估中,该方法能够强化高精度分类器成员的查询贡献,降低高误差成员的投票影响,减少机器训练过程中的标注学习次数。通过在UCI的Statlog(Australian Credit Approval)数据集上对用户信用度级别进行识别,并比较于其他采样方法,证明该方法能够用较小的采样标注代价获取稳定的泛化精度。 In this paper, a method of weighted voting is proposed which can adjust weights of classifiers in committee during the sampling process and it is based on query by committee algorithm. In process of unlabeled sample’s quality evaluation, the method can strengthen the contribution of high precision members, reduce the influence of high error mem-bers and decrease the times of learning which is needed in machine training. By experiment on dataset of Statlog(Austra-lian Credit Approval)and compared results with other methods, the effectiveness has been proved that the algorithm can gain stable generalization accuracy with smaller costs of samples labeling.
作者 陈念 唐振民
出处 《计算机工程与应用》 CSCD 2014年第21期259-263,共5页 Computer Engineering and Applications
基金 安徽省教育厅高等学校自然科学研究重点项目(No.KJ2012A211)
关键词 主动学习 采样查询 加权投票 标注门槛 active leaming sampling query weighted voting entropy labeling threshold
  • 相关文献

参考文献15

  • 1陈荣,曹永锋,孙洪.基于主动学习和半监督学习的多类图像分类[J].自动化学报,2011,37(8):954-962. 被引量:74
  • 2Hoi S C H,Jin R,Lyu M R.Large-scale text categoriza- tion by batch mode active learning[C]//Proceedings of the International Conference on World Wide Web.[S.1.]: ACM Press, 2006 : 633-642. 被引量:1
  • 3Settles B,Craven M.An analysis of active learning strat- egies for sequence labeling tasks[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. [S.1.] : ACL Press, 2008 : 1069-1078. 被引量:1
  • 4Hauptmann,Lin W, Yan R,et al.Extreme video retrieval: joint maximization of human and computer performance[C]// Proceedings of ACM Workshop on Multimedia Image Retrieval.[S.1.] , ACM Press, 2006 : 385-394. 被引量:1
  • 5Chu W,Zinkevich M,Li L,et al.Unbiased online active learning in data streams[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Dis- covery and Data Mining.[S.1.] :ACM Press,2011 : 195-203. 被引量:1
  • 6Graepel T, Candela J Q, Borchert T, et al.Web-scale Bayesian click-through rate prediction for sponsored search adver- tising in Microsoft's Bing search engine[C]//Proeeedings of the 27th International Conference on Machine Learning, 2010: 13-20. 被引量:1
  • 7吴伟宁,刘扬,郭茂祖,刘晓燕.基于采样策略的主动学习算法研究进展[J].计算机研究与发展,2012,49(6):1162-1173. 被引量:33
  • 8Tong S, Koller D.Support vector machine active learningwith applications to text classification[J].The Journal of Machine Learning Research, 2001 ( 2 ) : 45-66. 被引量:1
  • 9Huang Shengjun, Jin Rong, Zhou Zhihua.Active learning by querying informative and representative examples[C]// Proc of NIPS 2010.Cambridge, MA: M1T Press, 2010: 892-900. 被引量:1
  • 10Dagan I,Engelson S P.Committee based sampling for training probahilistic classifiers[C]//Proceedings of the 12th International Conference on Machine Learning, 1995: 150-157. 被引量:1

二级参考文献97

  • 1Settles B. Active Learning Literature Survey, Computer Science Technical Report 1648, University of Wisconsin- Madison, USA, 2009. 3-4. 被引量:1
  • 2Dasgupta S. Coarse sample complexity bounds for active learning. Advances in Neural Information Processing Sys- tems. Cambridge: The MIT Press, 2006. 235-242. 被引量:1
  • 3Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM Inter- national Conference on Multimedia. New York, USA: ACM, 2001. 107-118. 被引量:1
  • 4Tong S, Koller D. Support vector machine active learning with applications to text classification. The Journal of Ma- chine Learning Research, 2002, 2:45-66. 被引量:1
  • 5Seung H S, Opper M, Sompolinsky H. Query by commit- tee. In: Proceedings of the 5th Annual Workshop on Com- putational Learning Theory. New York, USA: ACM, 1992. 287-294. 被引量:1
  • 6Dagan I, Engelson S P. Committee-based sampling for train- ing probabilistic classifiers. In: Proceedings of the 12th International Conference on Machine Learning. California, USA: Morgan Kaufmann, 1995. 150-157. 被引量:1
  • 7Hoi S C H, Jin R, Lyu M R. Batch mode active learning with applications to text categorization and image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1233-1248. 被引量:1
  • 8Joshi A J, Porikli F, Papanikolopoulos N. Multi-class ac- tive learning for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 2372-2379. 被引量:1
  • 9Zhu X J. Semi-supervised Learning Literature Survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison. USA. 2008. 11-13. 被引量:1
  • 10Riloff E, Wiebe J, Wilson T. Learning subjective nouns using extraction pattern bootstrapping. In: Proceedings of the 7th Conference on Natural Language Learning. Stroudsburg, USA: Association for Computational Linguis- tics, 2003. 25-32. 被引量:1

共引文献98

同被引文献27

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部