期刊文献+

面向最佳决策结构的置信规则库结构学习方法 被引量:4

Structure Learning Approach of Belief Rule Base for Best Decision Structure
下载PDF
导出
摘要 针对置信规则库中初始结构不合理的问题,现有的解决方法仍存在不具备可重复性或受数据完备性和等级效用值相关联的制约等方面的不足。鉴于此,对置信规则库的参数学习进行了理论分析和实验验证,总结出不合理结构下置信规则库中易出现结构欠完备问题或结构过完备问题;将DBSCAN算法和误差分析嵌入到现有参数学习方法中用于解决上述问题,进而提出了面向最佳决策结构的结构学习方法;通过实验分别在过完备结构和欠完备结构的置信规则库下验证了新方法,并对比了结构改变时误差的变化。实验结果表明所提方法是有效可行的。 For the problem of irrational initial structure of belief rule base (BRB), the existing solving approaches still have deficiencies in many aspects such as non-repeatability, the completeness of data and the constraint with the associated level utility. In view of this, through theoretical analysis and experimental verification for parameter learning approaches of BRB, this paper summarizes that the irrational structure of BRB may lead to the problem of over-complete or incomplete structure. This paper takes the application of DBSCAN algorithm and error analysis to the existing parameter learning methods, and brings forth the structure learning approach for best decision structure. The experiments verify the new approach under over-complete and incomplete structures of BRB, and make a comparative analysis of the changes of error when the structure is varying. The results show the feasibility and effectiveness of the proposed approach.
出处 《计算机科学与探索》 CSCD 2014年第10期1216-1230,共15页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 Nos.70925004 71371053 61300026 61300104 福建省教育厅科技项目 No.JA13036 福州大学科技发展基金项目 No.2014-XQ-26~~
关键词 置信规则库(BRB) 结构学习 DBSCAN算法 误差分析 belief rule base (BRB) structure learning DBSCAN algorithm error analysis
  • 相关文献

参考文献3

二级参考文献36

  • 1[1]Han JW,Kamber M. Data Mining:Concepts and Techniques[D]. Simon Fraser University,2000. 被引量:1
  • 2[2]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[A]. IPPS-98,Proceedings of the First Workshop on High Performance Date Mining[C]. Orlando,Florida,USA,1998. 被引量:1
  • 3[3]Ester M,Kriegel HP,Sander J,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[A]. Proceedings 2nd International Conference on Knowledge Discovery and Data Mining[C]. Portland,OR,1996. 226-231. 被引量:1
  • 4[4]Wang HX,Zaniolo C. Database System Extensions for Decision Support:the AXL Approach[A]. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery[C]. 2000. 11-20. 被引量:1
  • 5Yang J B, et al. Optimization models for training belief rule based systems[J]. IEEE Transactions on Systems, Man, and Cybernetics -- Part A: Systems and Humans, 2007,37 (4) : 569 - 585. 被引量:1
  • 6Yang J B, et al. Belief rule-base inference methodo- logy using the evidential reasoning approach- RIMER[J]. IEEE Transactions on System, Man and Cybernetics -- Part A: Systems and ttumans, 2006,36(2) :266-285. 被引量:1
  • 7Liu J, et al. Self-tuning of fuzzy belief rule bases forengineering system safety analysis [J]. Annals of Operations Research, 2008,163 (1) : 143 - 168. 被引量:1
  • 8Zhou Z J, et al. Online updating belief-rule-based system for pipeline leak detection under expert intervention[J]. Expert Systems With Applications, 2009,36 (4) : 7700-7709. 被引量:1
  • 9Hu C H, et al. Dynamic evidential reasoning algorithm for systems reliability prcdiction [J]. International Journal of Systems Science, 2010, 41 (7): 783-796. 被引量:1
  • 10Kong G L, et al. Applying a belief rule-base inference methodology to a guideline-based clinical decision support system[J]. Expert Systems, 2009, 26(5): 391 - 408. 被引量:1

共引文献87

同被引文献21

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部