期刊文献+

基于FCM聚类的时间序列模糊关联规则挖掘 被引量:7

Fuzzy association rules mining from time series based on FCM clustering
下载PDF
导出
摘要 针对复杂系统产生的时间序列,研究其局部关联特征比研究系统全局特征模型具有明显的优势.为研究时间序列内部或局部形态的关联特征,首先借助FCM来软化时间序列属性论域的划分边界,然后,采用改进的布尔型属性关联规则并行挖掘算法来发现频繁模糊属性集,最后由多个处理器并行地产生满足最小模糊信任度的模糊关联规则.提出了基于FCM聚类的时间序列模糊关联规则的并行挖掘算法,并通过实验验证了算法的有效性. On the occasion of dealing with time series from complex system,the investigation of series'local patterns and local relationship has distinct superiority over traditional global models.In order to find rules relating to inside or local patterns in a time series,fuzzy C-means(FCM)clustering is used to soften the effect of sharp boundaries of delegate of each local sub-series.Then,the parallel algorithm for mining Boolean association rules is improved to discover frequent fuzzy attributes set.Finally,the fuzzy association rules with least fuzzy confidence are parallelly generated by all processors.The practical calculation results show that the mining of fuzzy association rules from time series based on FCM clustering is effective.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第5期806-810,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(10771092) "九七三"国家重点基础研究发展规划资助项目(2004CB318000) 教育部专项研究课题资助项目(2007110)
关键词 数据挖掘 时间序列 模糊关联规则 并行 data mining time series fuzzy association rules parallel
  • 相关文献

参考文献8

  • 1GAO L, WANG X Y S. Continuous similarity-based queries on streaming time series [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(10) :1320-1332. 被引量:1
  • 2ZHANG Z G, CHAN Shing-ehow. Robust adaptive Lomb periodogram for time-frequency analysis of signals with sinusoidal and transient components[C] //IEEE ICASSP. Philadelphia:IEEE, 2005:493-496. 被引量:1
  • 3DAS G, LIN King-ip, MANNILA H, et al. Rule discovery from time series [C] // Proceeding of the 3^rd International Conference of Knowledge Discovery and Data Mining. California: AAAI Press, 1998: 16- 22. 被引量:1
  • 4MARK L, KLEIN Y, KANDEL A. Knowledge discovery in time series databases [J]. IEEE Transactions on Systems, Man and Cybernetics, 2001, 31(1), 160-169. 被引量:1
  • 5GEORGE E P B,Gwilym M.Jenkins,et al.[A].时间序列分析预测与控制[M].顾岚译.北京:中国统计出版社,1997. 被引量:3
  • 6高新波著..模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004:214.
  • 7AGRAWAL R, SHAFER J C. Parallel mining of association rules: design, implementation and experience [J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6) :962-969. 被引量:1
  • 8Tan Pang-Ning,Steinbach M,Kumar V.数据挖掘导论[M].范明,范宏建译.北京:人民邮电出版社,2006. 被引量:30

共引文献31

同被引文献68

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部