期刊文献+

连续d-cone的Sandwich性质 被引量:1

The Sandwich property of continuous d-cones
原文传递
导出
摘要 本文研究了连续d-cone的Sandwich性质,证明连续d-cone的Sandwich性质关于乘积和连续线性收缩封闭.特别地,本文证明了:设X是连续domain,C是连续d-cone,下述两条等价:(1)任给Scott连续映射^q,^p:X×C→-R+满足^q≤^p,若对任意x∈X,^q(x,-),^p(x,-):C→-R+分别是超线性的和子线性的,则存在Scott连续函数∧^:X×C→-R+使得^q≤^Λ≤^p且对任意x∈X有^Λ(x,-):C→-R+是线性函数;(2)X是离散domain即X的任意两个不同元素不可比较.该结果回答了2009年Tix,Keimel和Plotkin提出的一个公开问题. In this paper, we investigate the Sandwich property of continuous d-cones and show that the Sandwich property of continuous d-cones is closed under products and continuous retractions. Particularly, it is proved that for a continuous domain X and a continuous d-cone C, the following conditions are e- quivalent : (1) for two continuous maps q,p:X × C → R+with q ≤p, for any x ∈X,q(x,-),p(x,-): C→R+ are superlinear and sublinear respectively, then there exists a continuous function A :X × C→ R+ such that q ≤∧ ≤p and∧(x,-).-C→ R+ is linear for all∈ E X. (2) X is a discrete domain. This result answers an open question by Tix, Keimel and Plotkin in 2009.
作者 熊雷 寇辉
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期863-867,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11371262)
关键词 Sandwich性质 线性函数 Continuous d-cone Sandwich property Linear function
  • 相关文献

参考文献13

  • 1Abramsky S,Jung A.Domain Theory[M].Handbook of Logic in Computer Science.Oxford:Oxford University Press,1994. 被引量:1
  • 2Amadio R M,Curien P L.Domains and LambdaCalculi[M].Cambridge:Cambride University Press,1998. 被引量:1
  • 3Gierz G,et al.Continuous Lattices and Domains[M].Cambridge:Combridge University Press,2003. 被引量:1
  • 4Jones C,Plotkin G.A probabilistic powerdomain of evaluations[C]// Proceedings of the Fourth Annual Symposium on Logic in Computer Science.USA:IEEE Computer Society Press,1989. 被引量:1
  • 5Keimel K.Topological cone:functional analysis in T0-setting[J].Semigroup Forum,2008,77:109. 被引量:1
  • 6Keimel K,Roth W.Ordered cones and approximation[M].Lecture Notes in Mathematics,Vol.1517.Berlin/New York:Springer Verlag,1992. 被引量:1
  • 7Roth W. Hahn-Banach type theorems for locally convex cones[J]. Journal of the Australian Mathe- matical Society, 2000, 68(1).. 104. 被引量:1
  • 8Tix R.Continuous D-cones:Convexity and powerdomain constructions[D].Darmstadt:Technische Universit(a)t,1999. 被引量:1
  • 9Tix R.Some results on Hahn Banach type theorems for continuous d-cones[J].Theoretical Computer Scince,2001,246:205. 被引量:1
  • 10Tixa R,Keimela K,Plotkin G.Semantic domains for combining p and non-determinism[J].Electronic Notes in Theoretical Computer Science,2009,222:3. 被引量:1

二级参考文献33

  • 1[1]Liu Y M, Liang J H. Solutions to two problems of J. D. Lawson and M. Mislove[J]. Topology and Its Application, 1996,69:153 - 164. 被引量:1
  • 2[2]Liang J H, Keimel K. Compact continuous L-domain[J]. Computer and Mathemaics Application, 1999, 38:81 - 89. 被引量:1
  • 3[3]Jung A. Cartesian closed categories of domain[M]. UK:CWI Tracts, 1988. 被引量:1
  • 4[4]Erker T, Escardo M H, Keimel K. The way-below relation of function spaces over semantic domains[J]. Topology and Its Application, 1998, 89:61 - 74. 被引量:1
  • 5[5]Gierz G. A compendium of continuouw lattices[M]. Berlin:Springer-Verlag, 1980. 被引量:1
  • 6[6]Abramsky S, Jung A. Domain theory, in:S. Abramsky, D.M. GabbayandT. S.E. Maibaum, eds, handbookof logic in computer science (Vol Ⅲ ) [ M]. Oxford: Oxford University Press, 1994. 被引量:1
  • 7[7]Kou H, Luo M K. RW-spaces and compactness of function spaces for L-domains[J]. Topology and Its Application, 2003,129: 211 - 220. 被引量:1
  • 8Scott D. Outline of a mathematical theory of compu- tation[J]. 4th Annual Princeton Conference on Infor- mation Sciences and Systems, 1970: 169. 被引量:1
  • 9Scott D, Data types as lattices[J]. SIAM J. Compu- ting, 1976, 5: 522. 被引量:1
  • 10Scott D S. Domains for denotational semantics[C] // Nielson M, Schmidt E M. Internat. Colloq. on Au- tomata, Languages and Programs, Lecture Notes in Computer Science, Vol. 140, Berlin: Springer, 1982. 被引量:1

共引文献6

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部