摘要
对连续空间进行了进一步的研究,并且证明了下述各命题等价设X是一个T0拓扑空间.则下述三条等价:1)X是一个连续空间;2)映射∨:NI(X)→X有连续下伴随;3) X是某代数空间的连续收缩.
In this paper,the continuous space is further studied.On this basis,We prove the Equivalence of following statements:If X is T0-space,so the following three are equivalent1) X is T0 continuous space;2) The map ∨:NI(X)→X has a continuous lower adjoint;3) X is continuous retract of some algebraic space.
作者
王武
WANG Wu(Zhonghuan Information College Tianjin University of Technology,Tianjin 300380,China)
出处
《数学的实践与认识》
北大核心
2020年第19期276-280,共5页
Mathematics in Practice and Theory
关键词
连续空间
伴随
收缩
continuous space
adjoint
retract