期刊文献+

连续空间的伴随式刻画 被引量:6

Adjoint Characterization of Continuous Spaces
原文传递
导出
摘要 对连续空间进行了进一步的研究,并且证明了下述各命题等价设X是一个T0拓扑空间.则下述三条等价:1)X是一个连续空间;2)映射∨:NI(X)→X有连续下伴随;3) X是某代数空间的连续收缩. In this paper,the continuous space is further studied.On this basis,We prove the Equivalence of following statements:If X is T0-space,so the following three are equivalent1) X is T0 continuous space;2) The map ∨:NI(X)→X has a continuous lower adjoint;3) X is continuous retract of some algebraic space.
作者 王武 WANG Wu(Zhonghuan Information College Tianjin University of Technology,Tianjin 300380,China)
出处 《数学的实践与认识》 北大核心 2020年第19期276-280,共5页 Mathematics in Practice and Theory
关键词 连续空间 伴随 收缩 continuous space adjoint retract
  • 相关文献

参考文献3

二级参考文献39

  • 1[1]Abramsky, S. & Jung, A., Domain theory [A], in: Handbook of Logic in ComputerScience [M], S. Abramsky (ed.), Oxford, 1994. 被引量:1
  • 2[2]Gierz, el., G., A compendium of continuous lattices [M], Springer-Verlag, New York,1980. 被引量:1
  • 3[3]Gierz, G., Lawson, J. & Stralka, R., Quasicontinuous posets [J], Houston Journal ofMathematics, 92(1983), 191-208. 被引量:1
  • 4[4]Heckmann R., Power Domain constructions [D], PhD thesis, University des Saarlanes,1990. 被引量:1
  • 5[5]Heckmann, R., Power Domain constructions [J], Science of Computer Programming,17(1991), 77 117. 被引量:1
  • 6[6]Heckmann, R., Power Domains and second order predicates [J], Theoretical ComputerScience, 111(1993), 59-88. 被引量:1
  • 7[7]Heckmann R., An upper power Domain construction in terms of strongly compact sets[M], Lecture Notes in Computer Science 598, Springer-Verlag, New York, 1992, 272-293. 被引量:1
  • 8[8]Herrlich, H. & Strecker, G., Category theory [M], heldermann Verlag, Berlin, 1979. 被引量:1
  • 9[9]Jung, A. & Gunter, G., Coherence and consistency in Domains [J], Journal of Pureand Applied Algebra, 63(1990), 49-66. 被引量:1
  • 10[10]Keimel, K. & Paseka, J., A directed proof of the Hofmann-Mislove theorem [J],Proceedings of the AMS, 120(1994), 301-303. 被引量:1

共引文献17

同被引文献38

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部